To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activiti...To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activities were analyzed.The results showed that:the soil bulk density of surface soil decreased and soil porosity and field capacity increased after afforestation with seabuckthorn.The plant was found to effectively reduce the soil pH,increase the soil conductivity,soil organic matters and available nutrients.Soil microorganism quantity,soil enzyme activities were both higher in 0-20 cm layer than in 20-40 cm layer.With the increase years of remediation with seabuckthorn,the quantity of soil microorganism and enzyme activities were increasing to a higher level 5 to 8 years later.Our study indicates that seabuckthorn can effectively improve soil physical and chemical properties,increase the quantity of soil microorganisms and enzyme activities,which is of great significance for the ecosystem restoration in mining areas.展开更多
The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of sev...The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.展开更多
This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result...This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil.展开更多
Coal fly ash (CFA) and municipal sewage sludge (MSS) management is a great concern worldwide. An alternative gaining high interest, is their use in agriculture and for reclamation of degraded lands. The purpose of...Coal fly ash (CFA) and municipal sewage sludge (MSS) management is a great concern worldwide. An alternative gaining high interest, is their use in agriculture and for reclamation of degraded lands. The purpose of this paper was to present very briefly the results of some case studies carried out in China and Greece related to land reclamation and agricultural use of CFA and MSS separately or combined. An experiment in Platanoulia area, central Greece showed clearly that CFA applied together with MSS at appropriate rates increased substantially wheat grain and biomass yield and improved soil quality (increased soil pH, organic matter content, total nitrogen, available P and boron). In a long-term experiment carried out in Huaibei city, Anhui province, China with a reconstructed soil in a subsided land by using CFA, it was found that physicochemical characteristics (infiltration rate, bulk density, total nitrogen, available P and extractable K) tended to be improved over time. In another experiment in Rodia area central Greece, MSS application improved soil quality of limestone mining spoils from bauxite mining activities. Several other experiments with MSS in Greece showed a clear positive effect on cotton and maize yield and on soil quality.展开更多
The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experim...The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experiment, the effects of two additives on the labile fractions of Cu, Mn and Zn were investigated in a soil contamined during long-term application. The additive used was the coal fly ash. The treated soil was further enriched with heavy metals and allowed to age at room temperature for 30 days. After this period, they were extracted plant-available (EDTA;HNO3;CH3COOH) metal species. The addition of fly ash strongly reduced the plant-available of Mn for plants but to a lesser extent this applies to the plant-available of Cu and Zn for plants. By addition of 1% of fly ash as well as 2% of fly ash, the labile fraction of Cu, Mn and Zn were lowered by 6.3, 145.0 and 29.7 mg?kg-1, respectively. Moreover essential correlation between total Cu and Zn contents was stated in the soil with plant-available content of metals, with reference to both metals. Value of coefficients of correlation is attesting to it between the total and plant-available Cu and Zn contents which are respectively equal: R(Cu) = 0.845, R(Mn) = 0.864 and R(Zn) = 0.872 for p = 99.5%. The results suggested that leading into the soil of the additional amount of fly ash can be an effective way of chemical remediation with reference to soils contaminated by Cu or Mn or Zn. Because he causes immobilization of examined heavy metals in the soil and in the process in the arrangement a—soil is limiting the availability of these metals plant and more distant bonds of the food chain.展开更多
The influence of fly ash(FA)applied alone and/or with sewage sludge(SS)on wheat(Triticum vulgare)grain yield,biomass production and soil properties was studied in a field experiment.The results showed that both FA and...The influence of fly ash(FA)applied alone and/or with sewage sludge(SS)on wheat(Triticum vulgare)grain yield,biomass production and soil properties was studied in a field experiment.The results showed that both FA and SS significantly increased grain yield and plant biomass.FA applied alone increased significantly soil pH and EC while FA applied together with SS did not significantly affect them compared to mono FA treatment.Soil pH and EC values increased with time in FA and FA-SS treatments.SS increased soil organic matter and total N content and SS applied together with FA increased also available soil B.From the plant nutrients tested only tissue N concentration was increased significantly in all treatments compared to control.Copper,Zn,Mn,Ni,and Pb at both available and total concentrations are significantly affected.展开更多
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d...The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.展开更多
基金supported by the Fund for 863 Program(2013AA102904)the central university basic research project(2009KD01).
文摘To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activities were analyzed.The results showed that:the soil bulk density of surface soil decreased and soil porosity and field capacity increased after afforestation with seabuckthorn.The plant was found to effectively reduce the soil pH,increase the soil conductivity,soil organic matters and available nutrients.Soil microorganism quantity,soil enzyme activities were both higher in 0-20 cm layer than in 20-40 cm layer.With the increase years of remediation with seabuckthorn,the quantity of soil microorganism and enzyme activities were increasing to a higher level 5 to 8 years later.Our study indicates that seabuckthorn can effectively improve soil physical and chemical properties,increase the quantity of soil microorganisms and enzyme activities,which is of great significance for the ecosystem restoration in mining areas.
文摘The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.
文摘This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil.
文摘Coal fly ash (CFA) and municipal sewage sludge (MSS) management is a great concern worldwide. An alternative gaining high interest, is their use in agriculture and for reclamation of degraded lands. The purpose of this paper was to present very briefly the results of some case studies carried out in China and Greece related to land reclamation and agricultural use of CFA and MSS separately or combined. An experiment in Platanoulia area, central Greece showed clearly that CFA applied together with MSS at appropriate rates increased substantially wheat grain and biomass yield and improved soil quality (increased soil pH, organic matter content, total nitrogen, available P and boron). In a long-term experiment carried out in Huaibei city, Anhui province, China with a reconstructed soil in a subsided land by using CFA, it was found that physicochemical characteristics (infiltration rate, bulk density, total nitrogen, available P and extractable K) tended to be improved over time. In another experiment in Rodia area central Greece, MSS application improved soil quality of limestone mining spoils from bauxite mining activities. Several other experiments with MSS in Greece showed a clear positive effect on cotton and maize yield and on soil quality.
文摘The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experiment, the effects of two additives on the labile fractions of Cu, Mn and Zn were investigated in a soil contamined during long-term application. The additive used was the coal fly ash. The treated soil was further enriched with heavy metals and allowed to age at room temperature for 30 days. After this period, they were extracted plant-available (EDTA;HNO3;CH3COOH) metal species. The addition of fly ash strongly reduced the plant-available of Mn for plants but to a lesser extent this applies to the plant-available of Cu and Zn for plants. By addition of 1% of fly ash as well as 2% of fly ash, the labile fraction of Cu, Mn and Zn were lowered by 6.3, 145.0 and 29.7 mg?kg-1, respectively. Moreover essential correlation between total Cu and Zn contents was stated in the soil with plant-available content of metals, with reference to both metals. Value of coefficients of correlation is attesting to it between the total and plant-available Cu and Zn contents which are respectively equal: R(Cu) = 0.845, R(Mn) = 0.864 and R(Zn) = 0.872 for p = 99.5%. The results suggested that leading into the soil of the additional amount of fly ash can be an effective way of chemical remediation with reference to soils contaminated by Cu or Mn or Zn. Because he causes immobilization of examined heavy metals in the soil and in the process in the arrangement a—soil is limiting the availability of these metals plant and more distant bonds of the food chain.
文摘The influence of fly ash(FA)applied alone and/or with sewage sludge(SS)on wheat(Triticum vulgare)grain yield,biomass production and soil properties was studied in a field experiment.The results showed that both FA and SS significantly increased grain yield and plant biomass.FA applied alone increased significantly soil pH and EC while FA applied together with SS did not significantly affect them compared to mono FA treatment.Soil pH and EC values increased with time in FA and FA-SS treatments.SS increased soil organic matter and total N content and SS applied together with FA increased also available soil B.From the plant nutrients tested only tissue N concentration was increased significantly in all treatments compared to control.Copper,Zn,Mn,Ni,and Pb at both available and total concentrations are significantly affected.
基金supported by the National Key Basic Research Program of China(No.2014CB441003)the National Key Research and Development of China(No.2016YFD0200302)
文摘The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.