Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used...Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.展开更多
Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integr...Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.展开更多
Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the ...Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.展开更多
The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the...The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline.展开更多
Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucki...Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucking technique of soft coal with low permeability. It is clearly pointed out that the gas can be highly effectively sucked only by compression fracture along the occurrence of the coal seam, creating inter-seams crack belt because of the difference of bulgy deformation. After the flooding experiment in the 24080 workface of Pingdingshan No. 10 mine, the average single-bore volume of gas increases from 77 m3 to 7 893 mS, while decay cycle extended from 7 days to 80-90 days. Also, the single-bore extracting rate of gas increases to 33%.展开更多
Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presente...Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out.展开更多
In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in q...In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in question, occurring for example in the Bowen Basin(Australia) or the Upper Silesian Coal Basin(Poland). Among numerous properties and parameters, the following are very essential: susceptibility of coal beds to deformation connected with coal stress state change and contemporary shrinkage of the coal matrix during methane desorption. Those adverse geo-mechanical and physical-chemical effects are accompanied by essential change of the porous coal structure, which under these disadvantageous conditions is very complex. This study aims to show difficulties, which occur in phase of recognition of the methane-reach coal deposit. Volume absorbed methane(not surface adsorbed) in sub-micropores having minimal size comparable with gas molecule diameter must possess energy allowing separation of the nodes and methane release to micropores.展开更多
Improving the accuracy and precision of coal bed methane(CBM) estimates requires correction of older data from older coal exploration surveys to newer standards.Three methods,the depth gradient method,the contour aeri...Improving the accuracy and precision of coal bed methane(CBM) estimates requires correction of older data from older coal exploration surveys to newer standards.Three methods,the depth gradient method,the contour aerial weight method,and the well-point aerial weight method,were used to estimate the correction coefficient required to predict CBM gas content from coal exploration data.The data from the Nos.3 and 15 coal seams provided the coal exploration data while the CBM exploration stages within the X1 well block located in the southern part of the Qinshui Basin provided the data obtained using newer standards.The results show the correction coefficients obtained from the two aerial weight methods are similar in value but lower than the one obtained from the depth gradient method.The three methods provide similar results for the Nos.3 and 15 seams in that the correction factor is lower for the former seam.The results from the depth gradient method taken together with the coal seam burial depth and the coal rank suggest that variations in the correction factor increase linearly along with coal seam burial depth and coal rank.The correlation obtained can be applied to exploration and the evaluation of coal bed gas resources located in coalfields.展开更多
In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability an...In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD).展开更多
Accurate prediction of magmatic intrusion into a coal bed is illustrated using the method of seismic spectral decomposition.The characteristics of coal seismic reflections are first analyzed and the effect of variable...Accurate prediction of magmatic intrusion into a coal bed is illustrated using the method of seismic spectral decomposition.The characteristics of coal seismic reflections are first analyzed and the effect of variable time windows and domain frequencies on the spectral decomposition are examined.The higher domain frequency of coal bed reflections using the narrower STFT time window,or the smaller ST scale factor,are acceptable.When magmatic rock intrudes from the bottom of the coal bed the domain frequency of the reflections is decreased slightly,the frequency bandwidth is narrowed correspondingly,and the response from spectral decomposition is significantly reduced.Intrusion by a very thin magmatic rock gives a spectral decomposition response that is just slightly less than what is seen from a normal coal bed.Results from an actual mining area were used to validate the method.Predicting the boundary of magmatic intrusions with the method discussed herein was highly accurate and has been validated by observations from underground mining.展开更多
Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more att...Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established.展开更多
Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FE...Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered.展开更多
At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the...At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization.展开更多
A study to identify potential early opportunities for CO<sub>2</sub> storage in coal bed has been performed. CO<sub>2</sub>-ECBM can enhances the recovery of coalbed methane,and also store CO&l...A study to identify potential early opportunities for CO<sub>2</sub> storage in coal bed has been performed. CO<sub>2</sub>-ECBM can enhances the recovery of coalbed methane,and also store CO<sub>2</sub> in coal for geological time.CO<sub>2</sub>-ECBM is an effective measure for CO<sub>2</sub> mitigation,and also enhance the recovery of coalbed methane that can reduce the cost of CO<sub>2</sub> geological storage.The evaluation index system of feasibility展开更多
The reserve estimation of coal bed methane(CBM)reservoirs is ascertained through the analytical methods(volumetric method,material balance equation and decline curve analysis).However,the adoption of reserve estimatio...The reserve estimation of coal bed methane(CBM)reservoirs is ascertained through the analytical methods(volumetric method,material balance equation and decline curve analysis).However,the adoption of reserve estimation methods depends on exploration stage and availability of the required parameters.This study deals with the analytical assessment of parameters that participate in effecting the reserve estimation of CBM reservoirs through the analytical techniques.The accurate measurement challenges always exist for the parameters which participate in the reserve estimation of the conventional and unconventional reservoirs because of the inclusion of limitations while measurement.Therefore,the impact of that measurement challenge must be assessed.The study specifies the impact of parametric change on the reserve estimation of CBM reservoirs so that the degree of parametric effectiveness is analyzed.Uncertain values are adopted which are associated during the evaluation of input parameters for each method to determine the overall impact on potential of CBM reserves.Results reveal that change in specific parameters considering each method provide relatively more effect on estimation of reserves.Thus,the measurement of parameters must be done accurately for assessing reserves of CBM reservoirs based on available methods.展开更多
Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet dri...Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet drilling and hydraulic fracturing,is expected to create complex fracture networks in multilayers and enhance CBM recovery.The main purpose of this paper is to investigate the mechanisms and efficacy of radial borehole fracturing in increasing CBM production in multiple layers.First,a two-phase flow and multi-scale 3 D fracture network including radial laterals,hydraulic fractures and face/butt cleats model is established,and embedded discrete fracture model(EDFM)is applied to handle the complex fracture networks.Then,effects of natural-fracture nonuniform distribution are investigated to show the advantages of targeted stimulation for radial borehole fracturing.Finally,two field CBM wells located in eastern Yunnan-western Guizhou,China were presented to illuminate the stimulation efficiency by radial borehole fracturing.The results indicated that compared with vertical well fracturing,radial borehole fracturing can achieve higher gas/water daily production rate and cumulative gas/water production,approximately 2 times higher.Targeted communications to cleats and sweet spots and flexibility in designing radial borehole parameters in different layers so as to increase fracture-network complexity and connectivity are the major reasons for production enhancement of radial borehole fracturing.Furthermore,the integration of geology-engineering is vital for the decision of radial borehole fracturing designing scheme.The key findings of this paper could provide useful insights towards understanding the capability of radial borehole fracturing in developing CBM and coal-measure gas in multiple-thin layers.展开更多
According to the data of 146 coal samples measured by mercury penetration, coal pores are classified into two levels of 【65 nm diffusion pore and 】65 nm seeping pore by fractal method based on the characteristics of...According to the data of 146 coal samples measured by mercury penetration, coal pores are classified into two levels of 【65 nm diffusion pore and 】65 nm seeping pore by fractal method based on the characteristics of diffusion, seepage of coal bed methane(CBM) and on the research results of specific pore volume and pore structure. The diffusion pores are further divided into three categories: 【8 nm micropore, 8-20 nm transitional pore, and 20-65 nm mini-pore based on the relationship between increment of specific surface area and diameter of pores, while seepage pores are further divided into three categories: 65-325 nm mesopore, 325-1000 nm transitional pore, and 】1000 nm macropore based on the abrupt change in the increment of specific pore volume.展开更多
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ...To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.展开更多
The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called ' coal topping process'. The investigation focused on the effects of pyrolysis tem...The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called ' coal topping process'. The investigation focused on the effects of pyrolysis temperature and coal particle size on the product distribution and composition. The experimental results show that an increase in the pyrolysis temperature results in a higher yield of gaseous products while a larger particle size leads to a decrease of the liquid yield. An optimum temperature for the liquid yield was found to be 650℃. A certain amount of phenol groups was found in the liquid products, which may be used to produce high-valued fine chemicals. The FTIR analyses of the coal and chars show that aliphatic structures in the chars are gradually replaced by aromatic structures with the increasing of pyrolysis temperature and coal particle size. The results of this study provide fundamental data and optimal conditions to maximize light oils yields for the coal topping process.展开更多
Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element m...Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.展开更多
基金The financial supports received from the National Natural Science Foundation of China(21522609,21636009 and 21878328)the National Key Research and Development Program of China(Nos.2017YFC0307302,2016YFC0304003)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462018BJC004)Beijing Science and Technology Program,China(No.Z181100005118010)。
文摘Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.
基金supported by the National Natural Science Foundation of China(Grant No.51176051)the PetroChina Innovation Foundation(2012D- 5006-0210)the Colleges and Universities High-level Talents Program of Guangdong
文摘Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.
文摘Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.
基金supported by the National Basic Research Program of China(Nos.2009CB219603,2010CB226800,2009CB724601 and 2012BAC10B03)the National Natural Science Foundation of China(Major Program)(Nos.50490271 and 40672104)+2 种基金the National Natural Science Foundation of China(General Program)(No.40874071)the National Science&Technology Pillar Program in the Eleventh Five-Year Plan Period(Nos.2012BAB13B01 and2012BAC10B03)the Key Grant Project of Chinese Ministry of Education(No.306002)
文摘The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline.
文摘Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucking technique of soft coal with low permeability. It is clearly pointed out that the gas can be highly effectively sucked only by compression fracture along the occurrence of the coal seam, creating inter-seams crack belt because of the difference of bulgy deformation. After the flooding experiment in the 24080 workface of Pingdingshan No. 10 mine, the average single-bore volume of gas increases from 77 m3 to 7 893 mS, while decay cycle extended from 7 days to 80-90 days. Also, the single-bore extracting rate of gas increases to 33%.
文摘Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out.
基金sponsored by statutory research University of Science and Technology AGH,Cracow,Poland(No.11 100 281)
文摘In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in question, occurring for example in the Bowen Basin(Australia) or the Upper Silesian Coal Basin(Poland). Among numerous properties and parameters, the following are very essential: susceptibility of coal beds to deformation connected with coal stress state change and contemporary shrinkage of the coal matrix during methane desorption. Those adverse geo-mechanical and physical-chemical effects are accompanied by essential change of the porous coal structure, which under these disadvantageous conditions is very complex. This study aims to show difficulties, which occur in phase of recognition of the methane-reach coal deposit. Volume absorbed methane(not surface adsorbed) in sub-micropores having minimal size comparable with gas molecule diameter must possess energy allowing separation of the nodes and methane release to micropores.
基金supported by the National Basic Research Program of China (No. 2009CB219605)the National Natural Science Foundation of China (Nos. 40730422 and 40872104)
文摘Improving the accuracy and precision of coal bed methane(CBM) estimates requires correction of older data from older coal exploration surveys to newer standards.Three methods,the depth gradient method,the contour aerial weight method,and the well-point aerial weight method,were used to estimate the correction coefficient required to predict CBM gas content from coal exploration data.The data from the Nos.3 and 15 coal seams provided the coal exploration data while the CBM exploration stages within the X1 well block located in the southern part of the Qinshui Basin provided the data obtained using newer standards.The results show the correction coefficients obtained from the two aerial weight methods are similar in value but lower than the one obtained from the depth gradient method.The three methods provide similar results for the Nos.3 and 15 seams in that the correction factor is lower for the former seam.The results from the depth gradient method taken together with the coal seam burial depth and the coal rank suggest that variations in the correction factor increase linearly along with coal seam burial depth and coal rank.The correlation obtained can be applied to exploration and the evaluation of coal bed gas resources located in coalfields.
基金supported by the China National Major Scientifc and Technological Special Project for ‘‘Physical and Chemical Reaction between CO2 and Coal and Rock after Infuse CO2 into Deep Coal Bed’’ during the Twelfth Five-Year Plan Period(No.2011ZX05042-03)
文摘In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD).
基金provided by the National Natural Science Foundation of China (Nos. 40804026 and 40874054)the Postdoctoral Science Foundation of China (No. 20100471003)+2 种基金the Postdoctoral Science Foundation of Jiangsu Province (No.1002023B)the Open Projects of State Key Laboratory of Coal Resources and Mine Safety (No. 10KF05)the Youth Foundation of CUMT,are gratefully acknowledged
文摘Accurate prediction of magmatic intrusion into a coal bed is illustrated using the method of seismic spectral decomposition.The characteristics of coal seismic reflections are first analyzed and the effect of variable time windows and domain frequencies on the spectral decomposition are examined.The higher domain frequency of coal bed reflections using the narrower STFT time window,or the smaller ST scale factor,are acceptable.When magmatic rock intrudes from the bottom of the coal bed the domain frequency of the reflections is decreased slightly,the frequency bandwidth is narrowed correspondingly,and the response from spectral decomposition is significantly reduced.Intrusion by a very thin magmatic rock gives a spectral decomposition response that is just slightly less than what is seen from a normal coal bed.Results from an actual mining area were used to validate the method.Predicting the boundary of magmatic intrusions with the method discussed herein was highly accurate and has been validated by observations from underground mining.
文摘Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established.
基金Supported by the National Natural Science Foundation Special Originality Innovation Research Colony of China(50621403)
文摘Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered.
基金Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant No. 70971129) and Soft Science Project (Grant No. 2008041036-02). The authors would like to thank anonymous reviewers for their helpful comments.
文摘At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization.
文摘A study to identify potential early opportunities for CO<sub>2</sub> storage in coal bed has been performed. CO<sub>2</sub>-ECBM can enhances the recovery of coalbed methane,and also store CO<sub>2</sub> in coal for geological time.CO<sub>2</sub>-ECBM is an effective measure for CO<sub>2</sub> mitigation,and also enhance the recovery of coalbed methane that can reduce the cost of CO<sub>2</sub> geological storage.The evaluation index system of feasibility
文摘The reserve estimation of coal bed methane(CBM)reservoirs is ascertained through the analytical methods(volumetric method,material balance equation and decline curve analysis).However,the adoption of reserve estimation methods depends on exploration stage and availability of the required parameters.This study deals with the analytical assessment of parameters that participate in effecting the reserve estimation of CBM reservoirs through the analytical techniques.The accurate measurement challenges always exist for the parameters which participate in the reserve estimation of the conventional and unconventional reservoirs because of the inclusion of limitations while measurement.Therefore,the impact of that measurement challenge must be assessed.The study specifies the impact of parametric change on the reserve estimation of CBM reservoirs so that the degree of parametric effectiveness is analyzed.Uncertain values are adopted which are associated during the evaluation of input parameters for each method to determine the overall impact on potential of CBM reserves.Results reveal that change in specific parameters considering each method provide relatively more effect on estimation of reserves.Thus,the measurement of parameters must be done accurately for assessing reserves of CBM reservoirs based on available methods.
基金supported by the National Natural Science Foundation of China(National R&D Program for Major Research Instruments,51827804)Youth Program of National Natural Science Foundation of China(52004299)National Science Foundation for Distinguished Young Scholars(51725404)
文摘Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet drilling and hydraulic fracturing,is expected to create complex fracture networks in multilayers and enhance CBM recovery.The main purpose of this paper is to investigate the mechanisms and efficacy of radial borehole fracturing in increasing CBM production in multiple layers.First,a two-phase flow and multi-scale 3 D fracture network including radial laterals,hydraulic fractures and face/butt cleats model is established,and embedded discrete fracture model(EDFM)is applied to handle the complex fracture networks.Then,effects of natural-fracture nonuniform distribution are investigated to show the advantages of targeted stimulation for radial borehole fracturing.Finally,two field CBM wells located in eastern Yunnan-western Guizhou,China were presented to illuminate the stimulation efficiency by radial borehole fracturing.The results indicated that compared with vertical well fracturing,radial borehole fracturing can achieve higher gas/water daily production rate and cumulative gas/water production,approximately 2 times higher.Targeted communications to cleats and sweet spots and flexibility in designing radial borehole parameters in different layers so as to increase fracture-network complexity and connectivity are the major reasons for production enhancement of radial borehole fracturing.Furthermore,the integration of geology-engineering is vital for the decision of radial borehole fracturing designing scheme.The key findings of this paper could provide useful insights towards understanding the capability of radial borehole fracturing in developing CBM and coal-measure gas in multiple-thin layers.
文摘According to the data of 146 coal samples measured by mercury penetration, coal pores are classified into two levels of 【65 nm diffusion pore and 】65 nm seeping pore by fractal method based on the characteristics of diffusion, seepage of coal bed methane(CBM) and on the research results of specific pore volume and pore structure. The diffusion pores are further divided into three categories: 【8 nm micropore, 8-20 nm transitional pore, and 20-65 nm mini-pore based on the relationship between increment of specific surface area and diameter of pores, while seepage pores are further divided into three categories: 65-325 nm mesopore, 325-1000 nm transitional pore, and 】1000 nm macropore based on the abrupt change in the increment of specific pore volume.
基金the Chinese Scholarship Council (No. 201706370022) for the financial support to the joint Ph.D. programme at the University of Wollongong,Australia
文摘To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.
文摘The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called ' coal topping process'. The investigation focused on the effects of pyrolysis temperature and coal particle size on the product distribution and composition. The experimental results show that an increase in the pyrolysis temperature results in a higher yield of gaseous products while a larger particle size leads to a decrease of the liquid yield. An optimum temperature for the liquid yield was found to be 650℃. A certain amount of phenol groups was found in the liquid products, which may be used to produce high-valued fine chemicals. The FTIR analyses of the coal and chars show that aliphatic structures in the chars are gradually replaced by aromatic structures with the increasing of pyrolysis temperature and coal particle size. The results of this study provide fundamental data and optimal conditions to maximize light oils yields for the coal topping process.
文摘Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.