This paper analyzes the coal to char stages of char formation of six coals of different ranks by using Fourier transform infrared coupled w ith attenuated total reflectance(ATR-FTIR).The chars w ere obtained by coal p...This paper analyzes the coal to char stages of char formation of six coals of different ranks by using Fourier transform infrared coupled w ith attenuated total reflectance(ATR-FTIR).The chars w ere obtained by coal pyrolysis carried out at temperature range of 450~700℃.The data obtained show s the pragmatic disappearance of the aliphatic hydrogen content w ith increasing char formation temperature.Numerical evaluation of the spectra enabled the determination of aromaticity,fa.The aromaticity w as found to be betw een 0.66~0.79 for lignite,0.75~0.90 for sub-bituminous,0.84~1.00 for low volatile bituminous,0.83~1.00 for high volatile bituminous,0.94~1.00 for semi-anthracite,and 0.97~1.00 for anthracite respectively.With increasing rank of coal samples,spectra exhibit rising aromaticity and enhanced condensation of aromatic rings,w hereas the aliphatic chain lengths decrease.展开更多
This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, ...This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, and 1000℃ under CO2. With an increase in BC blending ra- tio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activa- tion energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, re- spectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.展开更多
The authors proposed an integrated gasification fuel cell zero-emission system.The coal char gasification is discussed using high temperature and concentration of CO_(2) produced by solid oxide fuel cells and oxy-fuel...The authors proposed an integrated gasification fuel cell zero-emission system.The coal char gasification is discussed using high temperature and concentration of CO_(2) produced by solid oxide fuel cells and oxy-fuel combustion.The gasification is simulated by Aspen plus based on Gibbs free energy minimization method.Gasification model of pulverized coal char is computed and analyzed.Effects of gas flow rate,pressure,preheating temperature,heat losses on syngas composition,reaction temperature,lower heating value and carbon conversion are studied.Results and parameters are determined as following.The optimum O_(2) flow rate is 20 kg/h.The reaction temperature decreases from 1645 to 1329℃when the CO_(2)flow rate increases from 0 to 5 kg/h,the CO_(2) flow rate should be operated reasonably;lower heating value reduces and reaction temperature increases as the pressure increases;compared to the CO_(2) preheating,O_(2) preheating has greater influence on reaction temperature and lower heating value.展开更多
This study examined an isothermal CO2 gasification of four chars prepared via two different methods,i.e.,conventional and microwave-assisted pyrolysis,by the approach of thermogravimetric analysis.Physical,chemical,an...This study examined an isothermal CO2 gasification of four chars prepared via two different methods,i.e.,conventional and microwave-assisted pyrolysis,by the approach of thermogravimetric analysis.Physical,chemical,and structural behaviours of chars were examined using ultimate analysis,X-ray diffraction,and scanning electronic microscopy.Kinetic parameters were calculated by applying the shrinking unreacted core(SCM)and random pore(RPM)models.Moreover,char-CO2 gasification was further simulated by using Aspen Plus to investigate thermodynamic performances in terms of syngas composition and cold gas efficiency(CGE).The microwave-induced char has the largest C/H mass ratio and most ordered carbon structure,but the smallest gasification reactivity.Kinetic analysis indicates that the RPM is better for describing both gasification conversion and reaction rates of the studied chars,and the activation energies and pre-exponential factors varied in the range of 78.45–194.72 kJ/mol and 3.15–102,231.99 s−1,respectively.In addition,a compensation effect was noted during gasification.Finally,the microwave-derived char exhibits better thermodynamic performances than the conventional chars,with the highest CGE and CO molar concentration of 1.30%and 86.18%,respectively.Increasing the pyrolysis temperature,gasification temperature,and CO2-to-carbon molar ratio improved the CGE.展开更多
Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single he...Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single heat- ing rate (A), non-isothermal multiple heating rate (B), and isothermal test (C), were conducted to calculate the ki- netic parameters of combustion of coal char. The results show that the combustion characteristics of bituminous coal char is better than that of anthracite char, and both increase of heating rate and increase of combustion temperature can obviously improve combustion characteristics of coal char. Activation energies of coal char combustion calculated by different methods are different, with activation energies calculated by methods A, B and C in the range of 103.12-- 153.77, 93.87--119.26, and 46.48--76.68 kJ/mol, respectively. By using different methods, activation energy of anthracite char is always higher than that of bituminous coal char. In non-isothermal tests, with increase of combus- tion temperature, the combustion process changed from kinetic control to diffusion control. For isothermal combus- tion, the combustion process was kinetically controlled at temperature lower than 580 ℃ for bituminous coal char and at temperature lower than 630 ℃ for anthracite char.展开更多
Non-isothermal method was used to study gasification characteristics of three coal chars and one biomass char.Four chars were made from anthracite coal(A),bituminous coal(B),lignite coal(L),and wood refuse(W),...Non-isothermal method was used to study gasification characteristics of three coal chars and one biomass char.Four chars were made from anthracite coal(A),bituminous coal(B),lignite coal(L),and wood refuse(W),respectively.The gasification process was studied by random pore model(RPM),unreacted core model(URCM)and volumetric model(VM).With an increase in metamorphic grade,the gasification reactivity of coal char decreased,and the gasification reactivity of biomass char was close to that of low metamorphic coal char.With an increase in heating rate,the gasification of all samples moved towards high temperature zone,and the whole gasification time decreased.It was concluded from kinetics analysis that the above-mentioned three models could be used to describe the gasification process of coal char,and the RPM fitted the best among the three models.In the RPM,the activation energies of gasification were193.9,225.3 and 202.8 kJ/mol for anthracite coal char,bituminous coal char and lignite coal char,respectively.The gasification process of biomass char could be described by the URCM and VM,while the URCM performed better.The activation energy of gasification of wood refuse char calculated by the URCM was 282.0 kJ/mol.展开更多
The gasification reactivity and kinetic parameters of coal chars for non-isothermal steam gasification were investigated.One kind of lignite and three kinds of bituminous coals were used as the samples,and their coal ...The gasification reactivity and kinetic parameters of coal chars for non-isothermal steam gasification were investigated.One kind of lignite and three kinds of bituminous coals were used as the samples,and their coal ranks follow the ascending order:XB<KL<ZJ<GD.As characterized by the comprehensive gasification index,the gasification reactivity of coal chars follows the descending order:XB>KL>ZJ>GD.Through systematically analyzing factors affecting gasification reactivity,it was ascertained that the gasification reactivity is mostly determined by the carbonaceous structure.The gasification reactivity is inversely proportional to the coal rank,and the higher the coal rank,the lower the gasification reactivity.A new kinetic model was proposed to calculate the kinetic parameters,in which the reaction order was considered as an unknown kinetic parameter.The reaction order n follows the ascending order:XB<KL<ZJ<GD,which are n=1.00,n=1.34,n=1.83,and n=2.63,respectively.It is proved that the reaction order is proportional to the coal rank,and the higher the coal rank,the higher the reaction order.展开更多
In this investigation, SAXS and XRD were used to investigate both the physical and chemical changes in six coals of different ranks subjected to heat treatment. The specific surface area which gives an indication of t...In this investigation, SAXS and XRD were used to investigate both the physical and chemical changes in six coals of different ranks subjected to heat treatment. The specific surface area which gives an indication of the reactivity of the coal (measures surface area available for reaction) was determined to be in the range of 70.04 - 260.40 m<sup>2</sup>/cm<sup>3</sup> particle volume for lignite from 450°C - 700°C. The specific surface area was determined to be in the range of 51.58 - 239.00 m<sup>2</sup>/cm<sup>3</sup> particle volume for sub-bituminous;440.60 - 241.70 m<sup>2</sup>/cm<sup>3</sup> particle volume for light volatile bituminous;452.71 - 247.73 m<sup>2</sup>/cm<sup>3</sup> particle volume for high volatile bituminous;349.11 - 347.52 m<sup>2</sup>/cm<sup>3 </sup>particle volume for semi-anthracite and 333.60 - 125.34 m<sup>2</sup>/cm<sup>3</sup> particle volume for anthracite respectively. On the other hand, the aromaticity was determined in the range of 0.66 - 0.76 for lignite;0.67 to 0.80 for sub-bituminous;0.91 - 0.97 for light volatile bituminous;0.93 - 0.99 for high volatile bituminous;0.96 - 1.00 for semi-anthracite and 0.96 to 0.99 for anthracite respectively. The porosity, pore size distribution associated with SAXS and the other crystallite parameters identified with XRD were also determined. Links between the physical and chemical parameters were established.展开更多
For low-income communities in South Africa,coal is the most common solid fuel which is burnt in a variety of devices,including imbaulas and cast-iron stoves.The present work was conducted with the aim of determining t...For low-income communities in South Africa,coal is the most common solid fuel which is burnt in a variety of devices,including imbaulas and cast-iron stoves.The present work was conducted with the aim of determining the effect of the fuel particle size on the performance of coal,typically sourced in low-income households in townships in South Africa,and to subsequently compare the performance with a feed char of a common cast iron stove.Four fuel particle sizes of 15,20,30,and 40 mm,as well as a composite of the sizes were tested at 550C,against their untreated coal analogues to evaluate the thermal performance of each fuel.The thermal performance assessment metrics are ignition time,water boiling time,heat transfer and combustion efficiencies,while CO and CO_(2)emissions were measured for the calculations of CO/CO_(2)ratios.Ignition times were found to decrease from coals to chars and to decrease with increasing particle size.The effects of fuel type on the water boiling time were only observed in the later stages of the burn cycle,with the char boiling a 2 L batch of water in an average 24 min,while the coals reported an average boiling time of 20 min.Heat transfer efficiencies showed no significant variation with fuel type or particle size,with the average efficiency for the coals and that of the chars being around 66%.The fuels’performance was better gauged by the combustion efficiency,which was found to improve marginally from the coal fuels to the chars,and to increase with increasing particle size.Results from this testwork could contribute to the performance inventories from the combustion of domestic coal mined in South Africa in a typical cast iron stove which is used in informal settlements.展开更多
Dephosphorization behavior of monazite concentrate with charred coal at high temperature was investigated.It is found that the roast temperature is the main factor for the dephosphorization of the monazite.The high de...Dephosphorization behavior of monazite concentrate with charred coal at high temperature was investigated.It is found that the roast temperature is the main factor for the dephosphorization of the monazite.The high dephosphorization efficiency can be reached at the temperatures ranging from 1 200 to 1 400°C.When the monazite pellets,made by pressing mixture of the monazite,charred coal and water into mould,were roasted at 1 400°C for 2 h,98%of phosphorus was removed from the monazite pellets.The roast time has little effect on the dephosphorization efficiency.Meanwhile,the particle size of the charred coal also has great influence on the dephosphorization efficiency of the monazite,and it is better to control particle size around 150μm,while Fe and Fe2O3 have neglectable effect on the dephosphorization of the monazite.展开更多
Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential...Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). Oxidation kinetic parameters were further investigated by model-fitting methods. The test results showed that the oxidation of spent catalysts was a quite mild process, while coal and coal char experienced sharp weight loss during oxidation. The temperature for commencement and termination of oxidation increased in the following order: coal〈coal char〈spent catalysts, and the oxidation of the three tested materials displayed a self-catalytic nature, with their largest oxidation rate appearing at a weight percent of 24.96%, 34.21% and 57.93%, respectively. The oxidation of spent catalysts obeyed a random nucleation model for the first-order reaction, with Ea=206.13 kJ/mol and lgA=10.10, and the oxidation of coal could be a diffusion-controlled reaction mechanism, with Ea=161.61 kJ/mol and lgA=7.74, while the oxidation of coal char also obeyed a random nucleation model for the first-order reaction, with Ea= 149.36 k J/mol and lgA=7.89.展开更多
Tuyere coke probing was conducted at the Baosteel Corex Plant in order to gain a better understanding of the structure of the char bed in the melter gasifier ( MG ). After screening, the specimens were observed by a...Tuyere coke probing was conducted at the Baosteel Corex Plant in order to gain a better understanding of the structure of the char bed in the melter gasifier ( MG ). After screening, the specimens were observed by an optical microscope to determine the mechanism of the char bed formation. X-ray diffraction (XRD) was used to clarify the degree of graphitization and infer thermal history of coke. The results show that the amount of powder coming from lump coal in the burden is much more than that from coke. Based on this, measures for improving the char bed' s permeability are proposed.展开更多
基金Supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa(Coal Research Chair Grant No.86880)
文摘This paper analyzes the coal to char stages of char formation of six coals of different ranks by using Fourier transform infrared coupled w ith attenuated total reflectance(ATR-FTIR).The chars w ere obtained by coal pyrolysis carried out at temperature range of 450~700℃.The data obtained show s the pragmatic disappearance of the aliphatic hydrogen content w ith increasing char formation temperature.Numerical evaluation of the spectra enabled the determination of aromaticity,fa.The aromaticity w as found to be betw een 0.66~0.79 for lignite,0.75~0.90 for sub-bituminous,0.84~1.00 for low volatile bituminous,0.83~1.00 for high volatile bituminous,0.94~1.00 for semi-anthracite,and 0.97~1.00 for anthracite respectively.With increasing rank of coal samples,spectra exhibit rising aromaticity and enhanced condensation of aromatic rings,w hereas the aliphatic chain lengths decrease.
基金financially supported by the National Natural Science Foundation of China (No. 51104014)
文摘This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, and 1000℃ under CO2. With an increase in BC blending ra- tio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activa- tion energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, re- spectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.
基金National Basic Research Program of China(No.2012CB215404,2012CB215406)the National Natural Science Foundation of China(No.51261120378)for financial support of this work.
文摘The authors proposed an integrated gasification fuel cell zero-emission system.The coal char gasification is discussed using high temperature and concentration of CO_(2) produced by solid oxide fuel cells and oxy-fuel combustion.The gasification is simulated by Aspen plus based on Gibbs free energy minimization method.Gasification model of pulverized coal char is computed and analyzed.Effects of gas flow rate,pressure,preheating temperature,heat losses on syngas composition,reaction temperature,lower heating value and carbon conversion are studied.Results and parameters are determined as following.The optimum O_(2) flow rate is 20 kg/h.The reaction temperature decreases from 1645 to 1329℃when the CO_(2)flow rate increases from 0 to 5 kg/h,the CO_(2) flow rate should be operated reasonably;lower heating value reduces and reaction temperature increases as the pressure increases;compared to the CO_(2) preheating,O_(2) preheating has greater influence on reaction temperature and lower heating value.
基金This work was financially supported by the National Key Research and Development Program of China(2017YFB0602601)the Key Research and Development Program of Ningxia Hui Autonomous Region(2019BCH01001).
文摘This study examined an isothermal CO2 gasification of four chars prepared via two different methods,i.e.,conventional and microwave-assisted pyrolysis,by the approach of thermogravimetric analysis.Physical,chemical,and structural behaviours of chars were examined using ultimate analysis,X-ray diffraction,and scanning electronic microscopy.Kinetic parameters were calculated by applying the shrinking unreacted core(SCM)and random pore(RPM)models.Moreover,char-CO2 gasification was further simulated by using Aspen Plus to investigate thermodynamic performances in terms of syngas composition and cold gas efficiency(CGE).The microwave-induced char has the largest C/H mass ratio and most ordered carbon structure,but the smallest gasification reactivity.Kinetic analysis indicates that the RPM is better for describing both gasification conversion and reaction rates of the studied chars,and the activation energies and pre-exponential factors varied in the range of 78.45–194.72 kJ/mol and 3.15–102,231.99 s−1,respectively.In addition,a compensation effect was noted during gasification.Finally,the microwave-derived char exhibits better thermodynamic performances than the conventional chars,with the highest CGE and CO molar concentration of 1.30%and 86.18%,respectively.Increasing the pyrolysis temperature,gasification temperature,and CO2-to-carbon molar ratio improved the CGE.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel(51134008)National Key Technology Research and Development Program in the 12th Five-year Plan of China(2011BAC01B02)
文摘Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single heat- ing rate (A), non-isothermal multiple heating rate (B), and isothermal test (C), were conducted to calculate the ki- netic parameters of combustion of coal char. The results show that the combustion characteristics of bituminous coal char is better than that of anthracite char, and both increase of heating rate and increase of combustion temperature can obviously improve combustion characteristics of coal char. Activation energies of coal char combustion calculated by different methods are different, with activation energies calculated by methods A, B and C in the range of 103.12-- 153.77, 93.87--119.26, and 46.48--76.68 kJ/mol, respectively. By using different methods, activation energy of anthracite char is always higher than that of bituminous coal char. In non-isothermal tests, with increase of combus- tion temperature, the combustion process changed from kinetic control to diffusion control. For isothermal combus- tion, the combustion process was kinetically controlled at temperature lower than 580 ℃ for bituminous coal char and at temperature lower than 630 ℃ for anthracite char.
基金supported by the China Postdoctoral Science Foundation(2016M600043)the Fundamental Research Funds for the Central Universities(FRF-TP-15-063A1)
文摘Non-isothermal method was used to study gasification characteristics of three coal chars and one biomass char.Four chars were made from anthracite coal(A),bituminous coal(B),lignite coal(L),and wood refuse(W),respectively.The gasification process was studied by random pore model(RPM),unreacted core model(URCM)and volumetric model(VM).With an increase in metamorphic grade,the gasification reactivity of coal char decreased,and the gasification reactivity of biomass char was close to that of low metamorphic coal char.With an increase in heating rate,the gasification of all samples moved towards high temperature zone,and the whole gasification time decreased.It was concluded from kinetics analysis that the above-mentioned three models could be used to describe the gasification process of coal char,and the RPM fitted the best among the three models.In the RPM,the activation energies of gasification were193.9,225.3 and 202.8 kJ/mol for anthracite coal char,bituminous coal char and lignite coal char,respectively.The gasification process of biomass char could be described by the URCM and VM,while the URCM performed better.The activation energy of gasification of wood refuse char calculated by the URCM was 282.0 kJ/mol.
基金The present work was supported by the National Natural Science Foundation of China(U1960205 and 51574023).
文摘The gasification reactivity and kinetic parameters of coal chars for non-isothermal steam gasification were investigated.One kind of lignite and three kinds of bituminous coals were used as the samples,and their coal ranks follow the ascending order:XB<KL<ZJ<GD.As characterized by the comprehensive gasification index,the gasification reactivity of coal chars follows the descending order:XB>KL>ZJ>GD.Through systematically analyzing factors affecting gasification reactivity,it was ascertained that the gasification reactivity is mostly determined by the carbonaceous structure.The gasification reactivity is inversely proportional to the coal rank,and the higher the coal rank,the lower the gasification reactivity.A new kinetic model was proposed to calculate the kinetic parameters,in which the reaction order was considered as an unknown kinetic parameter.The reaction order n follows the ascending order:XB<KL<ZJ<GD,which are n=1.00,n=1.34,n=1.83,and n=2.63,respectively.It is proved that the reaction order is proportional to the coal rank,and the higher the coal rank,the higher the reaction order.
文摘In this investigation, SAXS and XRD were used to investigate both the physical and chemical changes in six coals of different ranks subjected to heat treatment. The specific surface area which gives an indication of the reactivity of the coal (measures surface area available for reaction) was determined to be in the range of 70.04 - 260.40 m<sup>2</sup>/cm<sup>3</sup> particle volume for lignite from 450°C - 700°C. The specific surface area was determined to be in the range of 51.58 - 239.00 m<sup>2</sup>/cm<sup>3</sup> particle volume for sub-bituminous;440.60 - 241.70 m<sup>2</sup>/cm<sup>3</sup> particle volume for light volatile bituminous;452.71 - 247.73 m<sup>2</sup>/cm<sup>3</sup> particle volume for high volatile bituminous;349.11 - 347.52 m<sup>2</sup>/cm<sup>3 </sup>particle volume for semi-anthracite and 333.60 - 125.34 m<sup>2</sup>/cm<sup>3</sup> particle volume for anthracite respectively. On the other hand, the aromaticity was determined in the range of 0.66 - 0.76 for lignite;0.67 to 0.80 for sub-bituminous;0.91 - 0.97 for light volatile bituminous;0.93 - 0.99 for high volatile bituminous;0.96 - 1.00 for semi-anthracite and 0.96 to 0.99 for anthracite respectively. The porosity, pore size distribution associated with SAXS and the other crystallite parameters identified with XRD were also determined. Links between the physical and chemical parameters were established.
基金acknowledge the DS&T and NRF(Coal Research Chair Grant Nos.86880)of SA for financing this investigation.
文摘For low-income communities in South Africa,coal is the most common solid fuel which is burnt in a variety of devices,including imbaulas and cast-iron stoves.The present work was conducted with the aim of determining the effect of the fuel particle size on the performance of coal,typically sourced in low-income households in townships in South Africa,and to subsequently compare the performance with a feed char of a common cast iron stove.Four fuel particle sizes of 15,20,30,and 40 mm,as well as a composite of the sizes were tested at 550C,against their untreated coal analogues to evaluate the thermal performance of each fuel.The thermal performance assessment metrics are ignition time,water boiling time,heat transfer and combustion efficiencies,while CO and CO_(2)emissions were measured for the calculations of CO/CO_(2)ratios.Ignition times were found to decrease from coals to chars and to decrease with increasing particle size.The effects of fuel type on the water boiling time were only observed in the later stages of the burn cycle,with the char boiling a 2 L batch of water in an average 24 min,while the coals reported an average boiling time of 20 min.Heat transfer efficiencies showed no significant variation with fuel type or particle size,with the average efficiency for the coals and that of the chars being around 66%.The fuels’performance was better gauged by the combustion efficiency,which was found to improve marginally from the coal fuels to the chars,and to increase with increasing particle size.Results from this testwork could contribute to the performance inventories from the combustion of domestic coal mined in South Africa in a typical cast iron stove which is used in informal settlements.
基金Project(59804003)supported by the National Natural Science Foundation of China
文摘Dephosphorization behavior of monazite concentrate with charred coal at high temperature was investigated.It is found that the roast temperature is the main factor for the dephosphorization of the monazite.The high dephosphorization efficiency can be reached at the temperatures ranging from 1 200 to 1 400°C.When the monazite pellets,made by pressing mixture of the monazite,charred coal and water into mould,were roasted at 1 400°C for 2 h,98%of phosphorus was removed from the monazite pellets.The roast time has little effect on the dephosphorization efficiency.Meanwhile,the particle size of the charred coal also has great influence on the dephosphorization efficiency of the monazite,and it is better to control particle size around 150μm,while Fe and Fe2O3 have neglectable effect on the dephosphorization of the monazite.
文摘Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). Oxidation kinetic parameters were further investigated by model-fitting methods. The test results showed that the oxidation of spent catalysts was a quite mild process, while coal and coal char experienced sharp weight loss during oxidation. The temperature for commencement and termination of oxidation increased in the following order: coal〈coal char〈spent catalysts, and the oxidation of the three tested materials displayed a self-catalytic nature, with their largest oxidation rate appearing at a weight percent of 24.96%, 34.21% and 57.93%, respectively. The oxidation of spent catalysts obeyed a random nucleation model for the first-order reaction, with Ea=206.13 kJ/mol and lgA=10.10, and the oxidation of coal could be a diffusion-controlled reaction mechanism, with Ea=161.61 kJ/mol and lgA=7.74, while the oxidation of coal char also obeyed a random nucleation model for the first-order reaction, with Ea= 149.36 k J/mol and lgA=7.89.
文摘Tuyere coke probing was conducted at the Baosteel Corex Plant in order to gain a better understanding of the structure of the char bed in the melter gasifier ( MG ). After screening, the specimens were observed by an optical microscope to determine the mechanism of the char bed formation. X-ray diffraction (XRD) was used to clarify the degree of graphitization and infer thermal history of coke. The results show that the amount of powder coming from lump coal in the burden is much more than that from coke. Based on this, measures for improving the char bed' s permeability are proposed.