This review details the state of the art in research on top coal drawing mechanisms in Longwall top coal caving(LTCC)by examining the relevant literature over the last two decades.It startswith an introduction of the ...This review details the state of the art in research on top coal drawing mechanisms in Longwall top coal caving(LTCC)by examining the relevant literature over the last two decades.It startswith an introduction of the brief history and basic procedures of LTCC.The framework of research on the drawing mechanism,basic concepts,and some theoretical models of LTCC are detailed in sect.research framework of top coal drawingmechanism.The authors note that theTop coal drawbody(TCD),Top coal boundary(TCB)and Top coal recovery ratio(TCRR)are key factors in the drawingmechanism.TheBody-boundary-ratio(BBR)research system has been the classic framework for research over the last 20 years.The modified Bergmark-Roos model,which considers the effects of the supporting rear canopy,flowing velocity of top coal,and its shape factor,is optimal for characterizing the TCD.A 3Dmodel to describe the TCB that considers the thicknesses of the coal seam and roof strata is reviewed.In sect.physical testing and numerical simulation,the physical tests and numerical simulations in the literature are classified for ease of bibliographical review,and classic conclusions regarding the drawing mechanism of top coal are presented and discussedwith elaborate illustrations and descriptions.The deflection of the TCDis noted,and is caused by the shape of the rear canopy.The inclined coal seam always induces a largerTCD,and a deflection in theTCDhas also been observed in it.The effects of the drawing sequence and drawing interval on the TCRR are reviewed,where a long drawing interval is found to lead to significant loss of top coal.Its flowing behavior and velocity distribution are also presented.Sect.practical applications of drawingmechanisms forLTCCmines 4 summarizes over 10 cases where the TCRRof LTCCmines improved due to the guidance of the drawing mechanism.The final section provides a summary of the work here and some open questions.Prospective investigations are highlighted to give researchers guidance on promising issues in future research on LTCC.展开更多
基金This work is funded by the National Natural Science Foundation of China(Grant No.51934008,51674264 to Jiachen Wang,Grant No.51974320 to Shengli Yang)Fundamental Research Funds for the Central Universities(Grant No.06500182 to Zhengyang Song)Funds from State Key Laboratory of Coal Resources in Western China(SKLCRKF20-07 to Zhengyang Song).
文摘This review details the state of the art in research on top coal drawing mechanisms in Longwall top coal caving(LTCC)by examining the relevant literature over the last two decades.It startswith an introduction of the brief history and basic procedures of LTCC.The framework of research on the drawing mechanism,basic concepts,and some theoretical models of LTCC are detailed in sect.research framework of top coal drawingmechanism.The authors note that theTop coal drawbody(TCD),Top coal boundary(TCB)and Top coal recovery ratio(TCRR)are key factors in the drawingmechanism.TheBody-boundary-ratio(BBR)research system has been the classic framework for research over the last 20 years.The modified Bergmark-Roos model,which considers the effects of the supporting rear canopy,flowing velocity of top coal,and its shape factor,is optimal for characterizing the TCD.A 3Dmodel to describe the TCB that considers the thicknesses of the coal seam and roof strata is reviewed.In sect.physical testing and numerical simulation,the physical tests and numerical simulations in the literature are classified for ease of bibliographical review,and classic conclusions regarding the drawing mechanism of top coal are presented and discussedwith elaborate illustrations and descriptions.The deflection of the TCDis noted,and is caused by the shape of the rear canopy.The inclined coal seam always induces a largerTCD,and a deflection in theTCDhas also been observed in it.The effects of the drawing sequence and drawing interval on the TCRR are reviewed,where a long drawing interval is found to lead to significant loss of top coal.Its flowing behavior and velocity distribution are also presented.Sect.practical applications of drawingmechanisms forLTCCmines 4 summarizes over 10 cases where the TCRRof LTCCmines improved due to the guidance of the drawing mechanism.The final section provides a summary of the work here and some open questions.Prospective investigations are highlighted to give researchers guidance on promising issues in future research on LTCC.