Optimization of fracturing perforation is of great importance to the commingling gas production in coal measure strata.In this paper,a 3 D lattice algorithm hydraulic fracturing simulator was employed to study the eff...Optimization of fracturing perforation is of great importance to the commingling gas production in coal measure strata.In this paper,a 3 D lattice algorithm hydraulic fracturing simulator was employed to study the effects of perforation position and length on hydraulic fracture propagation in coal measures of the Lin-Xing block,China.Based on field data,three lithologic combinations are simulated:1)a thick section of coal seam sandwiched by sandstones;2)a thin coal seam layer overlay by gas-bearing tight sandstone;3)two coal seams separated by a thin layer of sandstone.Our simulation shows that perforation position and length in multi-layer reservoirs play a major role in hydraulic fracture propagation.Achieving maximum stimulated volume requires consideration of lithologic sequence,coal seam thickness,stress states,and rock properties.To improve the combined gas production in coal measure strata,it is possible to simultaneously stimulate multiple coal seams or adjacent gas-bearing sandstones.In these cases,perforation location and length also significantly impact fracture propagation,and therefore should be carefully designed.Our simulation results using 3 D lattice algorithm are qualitatively consistent with laboratory physical simulation.3 D lattice models can be used to effectively simulate the fracture propagation through layers in coal measure strata.The numerical results provide guidance for perforation optimization in the hydraulic fracturing of coal measure strata.展开更多
A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formati...A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formation are enriched in gold,which were deposited in a limited platform environment in the transition zone from marine to continental.The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west,which led to the formation of a peculiar gold-bearing formation with coal series strata.This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province.In response to the remobilization of the Emei mantle plume during the Yanshanian period,As,Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams,thereafter forming ore-forming hydrothermal solutions.When these elements were transported in the coal seams,large amounts of As,Au and other elements were enriched in pyrite within the coal seams,thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.展开更多
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the proc...Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.展开更多
In the past decades,the intense excavation of coal resources in China has induced a series of severe waterrelated disasters or problems,such as water burst accidents,severe groundwater depletion and contamination.All ...In the past decades,the intense excavation of coal resources in China has induced a series of severe waterrelated disasters or problems,such as water burst accidents,severe groundwater depletion and contamination.All of these problems were caused by the structural changes of roof rocks or bed rocks induced by coal excavation.The structure of collapsed roof rocks is generally classified into three zones:falling zone.展开更多
In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental f...In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.展开更多
To enhance the technology and efficiency of strata injection is a problem to be solved urgently. Because of effected by the rough and poor production conditions of mining and the changeable bearing condition of strata...To enhance the technology and efficiency of strata injection is a problem to be solved urgently. Because of effected by the rough and poor production conditions of mining and the changeable bearing condition of strata, the technological process of injection can not be controlled automatically.The fuzzy controlling technology of the coal strata injection is applied. This is the good way to ensure the effectiveness and efficiency of coal strata injection and to solve the current problems of production and safety in mining industry.展开更多
Aiming at the shallow depth seam proximity beneath a room mining goaf, due to that the shallow depth seam is exploited using the longwall mining and overlain by thin bedrock and thick loose sands, many accidents are l...Aiming at the shallow depth seam proximity beneath a room mining goaf, due to that the shallow depth seam is exploited using the longwall mining and overlain by thin bedrock and thick loose sands, many accidents are likely to occur, including roof structure instability, roof step subsidence, damages of shield supports, and the face bumps triggered by the large area roof weighting, resulting in serious threats to the safety of underground miners and equipment. This paper analyses the overlying strata movement rules for the shallow seams using the physical simulation, the 3DEC numerical simulation and the field mea- surements. The results show that, in shallow seam mining, the overburden movement forms caved zone and fractured zone, the cracks develop continuously and reach the surface with the face advancing, and the development of surface cracks generally goes through four stages. With the application of loose blast- ing of residual pillars, reasonable mining height, and roof support and management, the safe, efficient and high recovery rate mining has been achieved in the shallow depth seam proximity beneath a room min ing goal.展开更多
To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was...To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.展开更多
Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to moni...Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.展开更多
Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata w...Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box.展开更多
Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain sh...Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.展开更多
According to the problem during mining coal seam with high gas and its control, the theory numerical calculation of gas and strata movement law caused by protection layer mining was studied, with the background of Sna...According to the problem during mining coal seam with high gas and its control, the theory numerical calculation of gas and strata movement law caused by protection layer mining was studied, with the background of Snake Mountain coal mine. First of all, the basic principle of fluid(gas)-solid coupling was briefly described, and a three dimensional model was established by FLAC software. Secondly, the calculation parameters of fluid-solid coupling were obtained based on the measured data, and the numerical calculation of sublevel mining was carried out in turn. Lastly, initial stress state, gas movement law, deformation law of pore pressure and movement characteristics of rock strata were studied, respectively. The results show that the gas and pressure were greatly reduced with the advance of 4 coal seam working surface, as well as the constant increase of area of goaf. Facilitating gas and the stress were gradually penetrated and released to goaf during the whole process of mining. The gas pressure, the aggregation degree and the surrounding rock pressure of the 1 coal seam and the 3 coal seam were greatly reduced.展开更多
基金the financial support by the National Key Research and Development Program of China(Grant No.2020YFC1808102)the Natural Science Foundation of China(No.51874328 and No.52074311)。
文摘Optimization of fracturing perforation is of great importance to the commingling gas production in coal measure strata.In this paper,a 3 D lattice algorithm hydraulic fracturing simulator was employed to study the effects of perforation position and length on hydraulic fracture propagation in coal measures of the Lin-Xing block,China.Based on field data,three lithologic combinations are simulated:1)a thick section of coal seam sandwiched by sandstones;2)a thin coal seam layer overlay by gas-bearing tight sandstone;3)two coal seams separated by a thin layer of sandstone.Our simulation shows that perforation position and length in multi-layer reservoirs play a major role in hydraulic fracture propagation.Achieving maximum stimulated volume requires consideration of lithologic sequence,coal seam thickness,stress states,and rock properties.To improve the combined gas production in coal measure strata,it is possible to simultaneously stimulate multiple coal seams or adjacent gas-bearing sandstones.In these cases,perforation location and length also significantly impact fracture propagation,and therefore should be carefully designed.Our simulation results using 3 D lattice algorithm are qualitatively consistent with laboratory physical simulation.3 D lattice models can be used to effectively simulate the fracture propagation through layers in coal measure strata.The numerical results provide guidance for perforation optimization in the hydraulic fracturing of coal measure strata.
文摘A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formation are enriched in gold,which were deposited in a limited platform environment in the transition zone from marine to continental.The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west,which led to the formation of a peculiar gold-bearing formation with coal series strata.This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province.In response to the remobilization of the Emei mantle plume during the Yanshanian period,As,Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams,thereafter forming ore-forming hydrothermal solutions.When these elements were transported in the coal seams,large amounts of As,Au and other elements were enriched in pyrite within the coal seams,thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.
基金sponsored by the National Key Basic Research Program of China (No.2013CB227905)Qinglan Projects of Jiangsu Province
文摘Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.
文摘In the past decades,the intense excavation of coal resources in China has induced a series of severe waterrelated disasters or problems,such as water burst accidents,severe groundwater depletion and contamination.All of these problems were caused by the structural changes of roof rocks or bed rocks induced by coal excavation.The structure of collapsed roof rocks is generally classified into three zones:falling zone.
基金Supported by the National Basic Research Program of China (2010CB226806)the Visiting Scholar Foundation of Key Laboratory for Exploitation of Southwestern Resources and Environmental Disaster Control Engineeringthe Outstanding Innovation Group Program of Anhui University of Science and Technology
文摘In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.
文摘To enhance the technology and efficiency of strata injection is a problem to be solved urgently. Because of effected by the rough and poor production conditions of mining and the changeable bearing condition of strata, the technological process of injection can not be controlled automatically.The fuzzy controlling technology of the coal strata injection is applied. This is the good way to ensure the effectiveness and efficiency of coal strata injection and to solve the current problems of production and safety in mining industry.
基金provided by the National Natural Science Foundation of China (No. 51304202)the Natural Science Foundation of Jiangsu Province of China (No. BK20130190)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2013QNA28)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)
文摘Aiming at the shallow depth seam proximity beneath a room mining goaf, due to that the shallow depth seam is exploited using the longwall mining and overlain by thin bedrock and thick loose sands, many accidents are likely to occur, including roof structure instability, roof step subsidence, damages of shield supports, and the face bumps triggered by the large area roof weighting, resulting in serious threats to the safety of underground miners and equipment. This paper analyses the overlying strata movement rules for the shallow seams using the physical simulation, the 3DEC numerical simulation and the field mea- surements. The results show that, in shallow seam mining, the overburden movement forms caved zone and fractured zone, the cracks develop continuously and reach the surface with the face advancing, and the development of surface cracks generally goes through four stages. With the application of loose blast- ing of residual pillars, reasonable mining height, and roof support and management, the safe, efficient and high recovery rate mining has been achieved in the shallow depth seam proximity beneath a room min ing goal.
基金the Joint Funds of the National Natural Science Foundation of China (No. U1361209)the National Basic Research Program of China (No. 2013CB227903)
文摘To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.
基金provided by the National 973 Programs(No.2014CB046905)the National Natural Science Foundation of China(Nos.51274191 and 51404245)+1 种基金the Doctoral Fund of Ministry of Education(No.20130095110018)China Postdoctoral Science Foundation(No.2014M551699)
文摘Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.
文摘Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box.
文摘Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.
基金Funded by the Open Research Foundation of Key Laboratory of Safety and High-efficiency Coal Mining,Ministry of Education(Anhui University of Science and Technology)(No.JYBSYS2015201)the National Natural Science Foundation of China(No.51574122)the Natural Science Foundation of Hunan Province,China(No.2017JJ2082)
文摘According to the problem during mining coal seam with high gas and its control, the theory numerical calculation of gas and strata movement law caused by protection layer mining was studied, with the background of Snake Mountain coal mine. First of all, the basic principle of fluid(gas)-solid coupling was briefly described, and a three dimensional model was established by FLAC software. Secondly, the calculation parameters of fluid-solid coupling were obtained based on the measured data, and the numerical calculation of sublevel mining was carried out in turn. Lastly, initial stress state, gas movement law, deformation law of pore pressure and movement characteristics of rock strata were studied, respectively. The results show that the gas and pressure were greatly reduced with the advance of 4 coal seam working surface, as well as the constant increase of area of goaf. Facilitating gas and the stress were gradually penetrated and released to goaf during the whole process of mining. The gas pressure, the aggregation degree and the surrounding rock pressure of the 1 coal seam and the 3 coal seam were greatly reduced.