期刊文献+
共找到302,504篇文章
< 1 2 250 >
每页显示 20 50 100
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:1
1
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving support strength support-surrounding rock interaction
下载PDF
Aqueous-phase reforming of hydroxyacetone solution to bio-based H_(2)over supported Pt catalysts
2
作者 A.K.K.Vikla K.Koichumanova +1 位作者 Songbo He K.Seshan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期777-788,共12页
Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,t... Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance. 展开更多
关键词 APR HYDROXYACETONE TOF Bio-based H_(2) support effect
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
3
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
4
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
Discussion on Detection and Evaluation of Simply Supported Prestressed Concrete Small Box Girder Bridge After a Fire
5
作者 Qing Yang Jiang Feng 《Journal of Architectural Research and Development》 2024年第2期108-113,共6页
The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness de... The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance. 展开更多
关键词 Prestressed concrete box girder Simply supported small box girder Fire damage Concrete testing Reinforcement testing
下载PDF
Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4 Catalyst 被引量:1
6
作者 张勇 陈春 +5 位作者 龚万兵 宋杰瑶 苏燕平 张海民 汪国忠 赵惠军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期467-473,I0002,共8页
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti... A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field. 展开更多
关键词 Activated charcoal supported Pt/Fe3O4 catalysts Redox method Transfer hydrogenation Cinnamaldehyde Cinnamyl alcohol
下载PDF
Supported liquid membrane extraction to treat coal gasification wastewater containing high concentrations phenol 被引量:1
7
作者 姚杰 何志茹 +4 位作者 雒安国 赵琪 贾丽 邵泽辉 李彪铭 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第1期55-57,共3页
The hollow fiber supported liquid membrane extraction was introduced to treat coal gasification wastewater to recover phenolic compounds,with tributyl phosphate (TBP) as carrier,kerosene as the membrane solvent,sodium... The hollow fiber supported liquid membrane extraction was introduced to treat coal gasification wastewater to recover phenolic compounds,with tributyl phosphate (TBP) as carrier,kerosene as the membrane solvent,sodium hydroxide solution as the stripping agent and PVDF as the membrane material. Factors having strong impact on the extraction efficiency were studied in detail,including the mass transfer mode,twophase flow rate,stripping phase concentration. As extraction system with 20% TBP-kerosene,parallel flow mass transfer,stripping phase concentration 0.1 mol/L,the optimal operating conditions could be obtained. Under the optimum operating conditions,the time required to reach equilibrium for the extraction is 50 min, and extraction efficiency of phenol is 86. 2% and the phenol concentration of effluent is 98.64 mg/L. 展开更多
关键词 supported liquid membrane coal gasification wastewater PHENOL extraction etticiency
下载PDF
Effects of ultrasound on the desulfurization performance of hot coal gas over Zn-Mn-Cu supported on semi-coke sorbent prepared by high-pressure impregnation method 被引量:4
8
作者 Xiaoyang Zhang Xianrong Zheng +2 位作者 Peng Han Ze Liu Liping Chang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期291-298,共8页
Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitra... Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents. 展开更多
关键词 ultrasound-assistance high-pressure impregnation mid-temperature desulfurization Zn-Mn-Cu sorbent semi-coke support
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China 被引量:1
9
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT Ordos Basin Carboniferous Benxi Formation risk exploration
下载PDF
Coalbursts in China: Theory, practice and management 被引量:2
10
作者 Yishan Pan Yimin Song +1 位作者 Hao Luo Yonghui Xiao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期1-25,共25页
Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. F... Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. From the "stress and energy" and "regional and local" perspectives, the achievements in the theory, practice and management of coalbursts in China are systematically summarized. A theoretical system of coalbursts has been formed to reveal the deformational behavior of coalbursts and explain the mechanism of coalbursts. The occurrence conditions of coalbursts are put forward and the critical stress is obtained. The stress index method for risk evaluation of coalbursts before mining is proposed, and the deformation localization prediction method of coalbursts is put forward. The relationship between energy release and absorption in the process of coalbursts is found, and the prevention and control methods of coalbursts, including the regional method, the local method and support, are presented. The safety evaluation index of coalburst prevention and control is put forward. The integrated prevention and control method for coal and gas outbursts is proposed. The prevention and control technology and equipment of coalbursts have also been developed. Amongst them, the distribution law of the critical stress in China coalburst mines is discovered. The technology and equipment for monitoring, prevention and control of coalbursts, as well as for integrated prevention and control of combined coalbursts and other disasters, have been developed. The energy-absorbing and coalburst-preventing support technology for roadways is invented, and key engineering parameters of coalburst prevention and control are pointed out. In China, coalburst prevention and control laws and standards have been developed. Technical standards for coalbursts are formulated, statute and regulations for coal mines are established, and regulatory documents are promoted. 展开更多
关键词 coalbursts Rockbursts Dynamic disaster Energy-absorbing support Monitoring and early warning
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:4
11
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Research on Bolt Support Technology in Soft Coal Seam Roadway
12
作者 Xinyuan Ma Wenzhong Zhou +2 位作者 Shuai Zhao Mingxuan Jiang Zihao Yu 《World Journal of Engineering and Technology》 2023年第2期370-380,共11页
In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical con... In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical conditions of roadway surrounding rock were analyzed by means of field investigation, rock mechanics experiment and numerical simulation. The design principles of roadway support in soft coal seam were put forward: high strength anchor cable support, high preload support and high stiffness support. The bearing capacity of surrounding rock was strengthened by anchor cable support, and the deformation and failure of surrounding rock were effectively controlled. Through the numerical simulation method, the deformation and plastic failure range of roadwaysunder different support schemes are compared and analyzed. The support scheme of centralized transportation roadway is studied and determined, and the field test is carried out, which effectively controls the deformation of surrounding rock of roadway in weak coal seam. 展开更多
关键词 Roadway support High Preload High Strength Bolt support support Design
下载PDF
Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation
13
作者 Peipei Ai Li Zhang +2 位作者 Jinchi Niu Huiqing Jin Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期222-229,共8页
Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased supp... Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased support to construct Cu/B-LPC catalyst for dimethyl oxalate(DMO) hydrogenation. Doping boron could make the B-LPC own more defects on surface and bigger pore size than B-free LPC, which were beneficial to disperse and anchor Cu nanoparticles. Moreover, the interaction between Cu species and B-LPC could be strengthened by the doped B, which not only stabilized the Cu nanoparticles, but also tuned the valence of Cu species to maintain more Cu^(+). Therefore, the B-doped Cu/B-LPC catalyst exhibited stronger hydrogenation ability and obtained higher alcohols selectivity than Cu/LPC, as well as high stability without decrease of DMO conversion and ethylene glycol selectivity even after 300 h of reaction at 240℃. 展开更多
关键词 HYDROGENATION Cu-based catalyst Boron doping Porous carbon Catalyst support ALCOHOL
下载PDF
Analysis of the interaction between bolt-reinforced rock and surface support in tunnels based on convergence-confinement method 被引量:1
14
作者 Zhenyu Sun Dingli Zhang +2 位作者 Qian Fang Yanjuan Hou Nanqi Huangfu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1936-1951,共16页
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb... To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design. 展开更多
关键词 Analytical model Longitudinal tunnel displacement Fictitious pressure Active rockbolts Surface support reaction pressure Tunnel design
下载PDF
Endeavors on the development of efficient and sustainable supported metal catalysts for chemical synthesis on solid-liquid interfaces
15
作者 Chao Yang Lifeng Cui 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期1-3,共3页
Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy sepa... Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy separation of product with less metal residue,as well as reusability of the high-cost catalysts.Although great effort has been spent,the precise catalytic mechanism of supported metal-catalyzed reactions has not been clearly elucidated and the development of efficient and stable recyclable catalysts remains challenging.This highlight reveals a“molecular fence”metal stabilization strategy and discloses the metal evolution in Pd-catalyzed C-C bond formation reactions using Nheterocyclic carbene(NHC)-functionalized hypercrosslinked polymer support,wherein the polymeric skeleton isolates or confines the metal species involved in the catalytic reactions,and NHC captures free low-valent metal species in solution and stabilizes them on the support via strong metal-support coordination interaction.This strategy creates a novel route for the development of supported metal catalysts with high stability and provides insights into the reaction mechanism of heterogeneous catalysis. 展开更多
关键词 supported metal catalysts Hypercrosslinked polymers Molecular fence effect C-C bond Formations
下载PDF
Depositional Environment and Origin of Inertinite-rich Coal in the Ordos Basin
16
作者 SHI Qingmin ZHAO Jun +5 位作者 JI Ruijun XUE Weifeng HAN Bo CAI Yue LI Chunhao CUI Shidong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期1064-1085,共22页
Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of ... Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin. 展开更多
关键词 inertinite-rich coal WILDFIRE coal petrology geochemistry biomarkers depositional environment
下载PDF
Effective depolymerization of alkali lignin using an attapulgite-Ce_(0.75)Zr_(0.25)O_(2)(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media
17
作者 Jiajia Chen Xinyu Lu +2 位作者 Dandan Wang Pengcheng Xiu Xiaoli Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期50-62,共13页
Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali ... Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali lignin in ethanol and isopropanol systems,and explored the effects of formic acid(FA)amount,reaction time,reaction temperature and other factors on the depolymerization of alkali lignin.Among them,formic acid serves as both catalytic and in situ-hydrogen donor.Ultimately,the highest yield of bio-oil(59.28%(mass)),including 30.05%(mass)of monomer,was obtained after a reaction of FA to alkali lignin mass ratio of 4 and 240°C for 8 h.Among the monomers,the yield of Guaiacol was the highest(5.94%(mass)),followed by 2-methoxy-4-methylphenol(5.74%(mass)).This study,the modification of attapulgite was carried out to reduce the acidity while enhancing the catalytic activity for depolymerization,and the selection of hydrogen donor was investigated.A feasible pathway for lignin depolymerization research was opened. 展开更多
关键词 Lignin Biofuel Catalyst support Mixing Ce_(0.75)Zr_(0.25)O_(2)solid solution
下载PDF
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage
18
作者 Angana Mahanta Debashis Sarmah +6 位作者 Nilotpol Bhuyan Monikankana Saikia Sarat Phukan K.S.V.Subramanyam Ajit Singh Prasenjit Saikia Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期133-147,共15页
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain... Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water. 展开更多
关键词 Opencast mining Pyrite oxidation coal geochemistry coal petrology Rare earth elements AMD remediation
下载PDF
Numerical analysis on the factors affecting post-peak characteristics of coal under uniaxial compression
19
作者 Zhiguo Lu Wenjun Ju +1 位作者 Fuqiang Gao Taotao Du 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期42-60,共19页
The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ... The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling. 展开更多
关键词 Post-peak behavior Synthetic rock mass coal bursts coal burst prevention
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
20
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部