Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-ginee...Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[展开更多
The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The enviro...The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.展开更多
In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and mor...In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficie...This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).展开更多
Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related e...Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related equipment modification;(2) optimal operation of existing desulfurization facilities.展开更多
With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China an...With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.展开更多
Based on the Chinese thermal coal and power generation data,such as ultimate analysis,proximate analysis,low heat value(LHV)on as received basis,power generation volume,thermal coal consumption volume and net coal con...Based on the Chinese thermal coal and power generation data,such as ultimate analysis,proximate analysis,low heat value(LHV)on as received basis,power generation volume,thermal coal consumption volume and net coal consumption rate,several mathematical models for calculating CO 2 reduction by Chinese coal-fired power plants are established.Calculations of the CO 2 emission factor(CEF),the CO 2 emission volume and reduction volume are made according to these models.The calculation results reveal that between 1993 and 2010,the CO 2 emission volume reached 31.069 Gt,reduced by 0.439 Gt,averaging 28.83 Mt each year.展开更多
The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and com...The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.展开更多
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power...Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.展开更多
China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies o...China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.展开更多
Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies ...Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system(FF + WFGD). Halogen injection(HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control(EC) scenario with stringent mercury limits compared to Business As Usual(BAU) scenario, the increase of selective catalytic reduction systems(SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.展开更多
China’s energy dependents on coal due to the abundance and low cost of coal.Coal provides a secure and stable energy source in China.Over-dependence on coal results in the emission of Hazardous Trace Elements(HTEs)in...China’s energy dependents on coal due to the abundance and low cost of coal.Coal provides a secure and stable energy source in China.Over-dependence on coal results in the emission of Hazardous Trace Elements(HTEs)including selenium(Se),mercury(Hg),lead(Pb),arsenic(As),etc.,from Coal-Fired Power Plants(CFPPs),which are the major toxic air pollutants causing widespread concern.For this reason,it is essential to provide a succinct analysis of the main HTEs emission control techniques while concurrently identifying the research prospects framework and specifying future research directions.The study herein reviews various techniques applied in China for the selected HTEs emission control,including the technical,institutional,policy,and regulatory aspects.The specific areas covered in this study include health effects,future coal production and consumption,the current situation of HTEs in Chinese coal,the chemistry of selected HTEs,control techniques,policies,and action plans safeguarding the emission control.The review emphasizes the fact that China must establish and promote efficient and clean ways to utilize coal in order to realize sustainable development.The principal conclusion is that cleaning coal technologies and fuel substitution should be great potential HTEs control technologies in China.Future research should focus on the simultaneous removal of HTEs,PM,SOx,and NOx in the complex flue gas.展开更多
Texas is the largest state by area in the US after Alaska,and one of the top states in the production and consumption of electricity with many coal-fired plants.Coal-fired power plants emit greater than 70% of polluta...Texas is the largest state by area in the US after Alaska,and one of the top states in the production and consumption of electricity with many coal-fired plants.Coal-fired power plants emit greater than 70% of pollutants in the energy sector.When coal is burned to produce electricity,nitrogen oxides(NO_(x))are released into the air,one of the main pollutants that threaten human health and lead to a large number of premature deaths.The key to effective air quality management is the strict compliance of all plants with emission standards.However,not all Texas coal plants have the environmental equipment to lower pollutant emissions.Nitrogen dioxide(NO2)observations from the TROPOspheric Monitoring Instrument(TROPOMI)were used to evaluate the emissions for Texas power plants.Data from both the Emissions and Generation Resource Integrated Database(EGRID)and the Emissions Database for Global Atmospheric Research(EDGAR)were used to examine emissions.It was found that NOx emissions for Texas power plants range from 1.53 kt/year to 10.99 kt/year,with the Martin Lake,Limestone and Fayette Power Project stations being the top emitters.WA Parish and Martin Lake stations have the strongest NOx fluxes,with both exhibiting significant seasonal variability.Comparisons of bottom-up inventories for EDGAR and EGRID show a high correlation(r=0.956)and a low root mean square error(0.766).A more reasonable control policy would lead to much reduced NOx emissions.展开更多
The United States is one of the world’s leaders in electricity production,generating about 4116 billion kWh in 2021,of which coal accounted for 21.8%of the total.This study applies an integrated approach using both t...The United States is one of the world’s leaders in electricity production,generating about 4116 billion kWh in 2021,of which coal accounted for 21.8%of the total.This study applies an integrated approach using both terrestrial and satellite data to specifically examine emissions from coal-fired power plants and its spatial extent.The study also highlights the effectiveness of government policies to reduce emissions.It was found that emission of pollutants from the country’s energy sector has been steadily declining,with annual emissions of sulfur dioxide(SO_(2))and nitrogen oxides(NOx)decreasing from the US electric power sector between 1990 and 2020 by 93.4%and 84.8%,respectively,and carbon dioxide(CO_(2))by 37%between 2007 and 2020.Although overall emissions from coal-fired power plants are declining,some individual plants have yet to install environmental equipment to control emissions.According to US government data,major emitters of SO_(2),NO_(x),and CO_(2) in the US are the Martin Lake power plant in East Texas,the Labadie power plant near St.Louis,Missouri,and the James H Miller Jr plant near Birmingham,Alabama.This study also integrates TROPOMI satellite data to detect point emissions from individual power plants.While the highest levels of measured pollutants were over the country’s major cities and areas of fossil fuel extraction,TROPOMI could clearly distinguish the pollution caused by power plants in more rural areas.Although the US has made great strides in reducing emissions from coal-fired power plants,these plants still represent a major source of pollution and remain a major concern.Totally eliminating coal as a power source will be difficult with the higher power demands resulting from the transition to electric automobiles.展开更多
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
文摘Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[
文摘The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.
文摘In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
基金Supported by the National Basic Research Pro-gram of China(973 Program)(2013CB228506).
文摘This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).
文摘Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related equipment modification;(2) optimal operation of existing desulfurization facilities.
文摘With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.
文摘Based on the Chinese thermal coal and power generation data,such as ultimate analysis,proximate analysis,low heat value(LHV)on as received basis,power generation volume,thermal coal consumption volume and net coal consumption rate,several mathematical models for calculating CO 2 reduction by Chinese coal-fired power plants are established.Calculations of the CO 2 emission factor(CEF),the CO 2 emission volume and reduction volume are made according to these models.The calculation results reveal that between 1993 and 2010,the CO 2 emission volume reached 31.069 Gt,reduced by 0.439 Gt,averaging 28.83 Mt each year.
文摘The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB40010200)the National Natural Science Foundation of China (Nos.41976220 and 41776190)the National Key Research and Development Program of China (No.2020YFA0608501)。
文摘Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.
基金supported by the National Key Research and Development Program of China[grant number 2022YFC3105304]the National Natural Science Foundation of China[grant number 72348001]the National Social Science Fund of China[grant number 22&ZD108].
文摘China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.
基金sponsored by the Major State Basic Research Development Program of China (973 Program) (No. 2013CB430001)the National Natural Science Foundation of China (No. 21307070)+1 种基金the MEP's Special Funds for Research on Public Welfares (201209015)the Sino-Norwegian cooperation project (SINOMER Ⅲ)
文摘Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system(FF + WFGD). Halogen injection(HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control(EC) scenario with stringent mercury limits compared to Business As Usual(BAU) scenario, the increase of selective catalytic reduction systems(SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.
基金financial support of National Key Research&Development Project of China(2018YFB0605101)National Natural Science Foundation of China(No.201706050)+1 种基金Key Project Natural Science Foundation of Tianjin(18JCZDJC39800)The Science and Technology Key Project of Tianjin(18ZXSZSF00040,18KPXMSF00080,18PTZWHZ00010)。
文摘China’s energy dependents on coal due to the abundance and low cost of coal.Coal provides a secure and stable energy source in China.Over-dependence on coal results in the emission of Hazardous Trace Elements(HTEs)including selenium(Se),mercury(Hg),lead(Pb),arsenic(As),etc.,from Coal-Fired Power Plants(CFPPs),which are the major toxic air pollutants causing widespread concern.For this reason,it is essential to provide a succinct analysis of the main HTEs emission control techniques while concurrently identifying the research prospects framework and specifying future research directions.The study herein reviews various techniques applied in China for the selected HTEs emission control,including the technical,institutional,policy,and regulatory aspects.The specific areas covered in this study include health effects,future coal production and consumption,the current situation of HTEs in Chinese coal,the chemistry of selected HTEs,control techniques,policies,and action plans safeguarding the emission control.The review emphasizes the fact that China must establish and promote efficient and clean ways to utilize coal in order to realize sustainable development.The principal conclusion is that cleaning coal technologies and fuel substitution should be great potential HTEs control technologies in China.Future research should focus on the simultaneous removal of HTEs,PM,SOx,and NOx in the complex flue gas.
基金This work was supported by the Basic Research Top Talent Plan of Lanzhou Jiaotong University(2022JC05).
文摘Texas is the largest state by area in the US after Alaska,and one of the top states in the production and consumption of electricity with many coal-fired plants.Coal-fired power plants emit greater than 70% of pollutants in the energy sector.When coal is burned to produce electricity,nitrogen oxides(NO_(x))are released into the air,one of the main pollutants that threaten human health and lead to a large number of premature deaths.The key to effective air quality management is the strict compliance of all plants with emission standards.However,not all Texas coal plants have the environmental equipment to lower pollutant emissions.Nitrogen dioxide(NO2)observations from the TROPOspheric Monitoring Instrument(TROPOMI)were used to evaluate the emissions for Texas power plants.Data from both the Emissions and Generation Resource Integrated Database(EGRID)and the Emissions Database for Global Atmospheric Research(EDGAR)were used to examine emissions.It was found that NOx emissions for Texas power plants range from 1.53 kt/year to 10.99 kt/year,with the Martin Lake,Limestone and Fayette Power Project stations being the top emitters.WA Parish and Martin Lake stations have the strongest NOx fluxes,with both exhibiting significant seasonal variability.Comparisons of bottom-up inventories for EDGAR and EGRID show a high correlation(r=0.956)and a low root mean square error(0.766).A more reasonable control policy would lead to much reduced NOx emissions.
文摘The United States is one of the world’s leaders in electricity production,generating about 4116 billion kWh in 2021,of which coal accounted for 21.8%of the total.This study applies an integrated approach using both terrestrial and satellite data to specifically examine emissions from coal-fired power plants and its spatial extent.The study also highlights the effectiveness of government policies to reduce emissions.It was found that emission of pollutants from the country’s energy sector has been steadily declining,with annual emissions of sulfur dioxide(SO_(2))and nitrogen oxides(NOx)decreasing from the US electric power sector between 1990 and 2020 by 93.4%and 84.8%,respectively,and carbon dioxide(CO_(2))by 37%between 2007 and 2020.Although overall emissions from coal-fired power plants are declining,some individual plants have yet to install environmental equipment to control emissions.According to US government data,major emitters of SO_(2),NO_(x),and CO_(2) in the US are the Martin Lake power plant in East Texas,the Labadie power plant near St.Louis,Missouri,and the James H Miller Jr plant near Birmingham,Alabama.This study also integrates TROPOMI satellite data to detect point emissions from individual power plants.While the highest levels of measured pollutants were over the country’s major cities and areas of fossil fuel extraction,TROPOMI could clearly distinguish the pollution caused by power plants in more rural areas.Although the US has made great strides in reducing emissions from coal-fired power plants,these plants still represent a major source of pollution and remain a major concern.Totally eliminating coal as a power source will be difficult with the higher power demands resulting from the transition to electric automobiles.