Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas r...Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.展开更多
After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and co...After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and core,analysis of common,cast and cathode thin sections,Ro and other geochemistry indexes,carbon isotope,electron microscope and other supporting tests and analyses,the hydrocarbon generation,reserves formation and reservoir formation characteristics of gas reservoirs at different buried depths in Yishaan slope were examined and compared.The deep gas reservoir has an average buried depth of more than 4200 m,and the main gas-bearing formation is the Member 1 of Lower Permian Shanxi Formation,which is characterized by low porosity,low permeability,low pressure and low abundance.It is believed that hydrocarbon generation in thin seam coal source rocks with high thermal evolution can form large gas fields,high-quality sandstone reservoirs with dissolved pores,intergranular pores and intercrystalline pores can still develop in late diagenetic stage under deep burial depth and high thermal evolution,and fractures improve the permeability of reservoirs.High drying coefficient of natural gas and negative carbon isotope series are typical geochemical characteristics of deep coal-formed gas.The integrated exploration and development method has been innovated,and the economic and effective development mode of gas fields of"dissecting sand body by framework vertical wells,centralized development by horizontal wells"has been formed.The discovery and successful exploration of the large gas field has provided geological basis and technical support for the construction of natural gas fields of 100 billion cubic meter scale in the southwest of the basin,and has important guidance for exploration of coal-derived gas with deep buried depth and high thermal evolution widely distributed in China.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
BACKGROUND Acute mesenteric ischemia is a life-threatening disease.Intrasplenic gas is an extremely rare finding in such cases.CASE SUMMARY We report a case of a 79-year-old woman with a history of end-stage renal dis...BACKGROUND Acute mesenteric ischemia is a life-threatening disease.Intrasplenic gas is an extremely rare finding in such cases.CASE SUMMARY We report a case of a 79-year-old woman with a history of end-stage renal disease on hemodialysis for approximately 20 years,type 2 diabetes mellitus,and atrial fibrillation who presented with two days of epigastric pain.A computed tomography scan of the abdomen revealed intraperitoneal free air and significant intrasplenic gas.Laparoscopy revealed diffuse intestinal gangrene,and acute superior mesenteric ischemia was diagnosed.The patient died within 24 hours owing to profound shock.CONCLUSION Intrasplenic gas is an extremely rare finding on computed tomography imaging in cases of acute mesenteric ischemia.展开更多
Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-e...Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ...Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.展开更多
In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the ind...In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer ...Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.展开更多
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ...The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.展开更多
Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implan...Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.展开更多
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g...When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe...A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.展开更多
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
Based on the HS 4-digit code trade data in UNCOMTRADE from 1995 to 2020, this paper analyzes the characteristics of the evolution of the global PG trade network using the complex network approach and analyzes the chan...Based on the HS 4-digit code trade data in UNCOMTRADE from 1995 to 2020, this paper analyzes the characteristics of the evolution of the global PG trade network using the complex network approach and analyzes the changes in its resilience at the overall and country levels, respectively. The results illustrated that:(1) The scale of the global PG trade network tends to expand, and the connection is gradually tightened, experiencing a change from a “supply-oriented” to a “supply-and-demand” pattern, in which the U.S., Russia, Qatar, and Australia have gradually replaced Canada, Japan, and Russia to become the core trade status, while OPEC countries such as Qatar, Algeria, and Kuwait mainly rely on PG exports to occupy the core of the global supply, and the trade status of other countries has been dynamically alternating and evolving.(2) The resilience of the global PG trade network is lower than that of the random network and decreases non-linearly with more disrupted countries. Moreover, the impact of the U.S. is more significant than the rest of countries. Simulations using the exponential random graph model(ERGM) model revealed that national GDP, institutional quality, common border and RTA network are the determinants of PG trade network formation, and the positive impact of the four factors not only varies significantly across regions and stages, but also increases with national network status.展开更多
基金financial support from the National major projects (Item No.2016ZX05006-003)
文摘Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2014CB239003)China National Science and Technology Major Project(2016ZX05050,2017ZX05001002).
文摘After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and core,analysis of common,cast and cathode thin sections,Ro and other geochemistry indexes,carbon isotope,electron microscope and other supporting tests and analyses,the hydrocarbon generation,reserves formation and reservoir formation characteristics of gas reservoirs at different buried depths in Yishaan slope were examined and compared.The deep gas reservoir has an average buried depth of more than 4200 m,and the main gas-bearing formation is the Member 1 of Lower Permian Shanxi Formation,which is characterized by low porosity,low permeability,low pressure and low abundance.It is believed that hydrocarbon generation in thin seam coal source rocks with high thermal evolution can form large gas fields,high-quality sandstone reservoirs with dissolved pores,intergranular pores and intercrystalline pores can still develop in late diagenetic stage under deep burial depth and high thermal evolution,and fractures improve the permeability of reservoirs.High drying coefficient of natural gas and negative carbon isotope series are typical geochemical characteristics of deep coal-formed gas.The integrated exploration and development method has been innovated,and the economic and effective development mode of gas fields of"dissecting sand body by framework vertical wells,centralized development by horizontal wells"has been formed.The discovery and successful exploration of the large gas field has provided geological basis and technical support for the construction of natural gas fields of 100 billion cubic meter scale in the southwest of the basin,and has important guidance for exploration of coal-derived gas with deep buried depth and high thermal evolution widely distributed in China.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
文摘BACKGROUND Acute mesenteric ischemia is a life-threatening disease.Intrasplenic gas is an extremely rare finding in such cases.CASE SUMMARY We report a case of a 79-year-old woman with a history of end-stage renal disease on hemodialysis for approximately 20 years,type 2 diabetes mellitus,and atrial fibrillation who presented with two days of epigastric pain.A computed tomography scan of the abdomen revealed intraperitoneal free air and significant intrasplenic gas.Laparoscopy revealed diffuse intestinal gangrene,and acute superior mesenteric ischemia was diagnosed.The patient died within 24 hours owing to profound shock.CONCLUSION Intrasplenic gas is an extremely rare finding on computed tomography imaging in cases of acute mesenteric ischemia.
基金supported by the National Natural Science Foundation of China, Nos.81971151 (to YW), 82102528 (to XL), 82102583 (to LW)the Natural Science Foundation of Guangdong Province, China, Nos.2020A1515010265 (to YW), 2020A1515110679 (to XL), and 2021A1515010358 (to XL)
文摘Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
基金supported by the State Key Laboratory of Natural Gas Hydrate(No.2022-KFJJ-SHW)the National Natural Science Foundation of China(No.42376058)+2 种基金the International Science&Technology Cooperation Program of China(No.2023YFE0119900)the Hainan Province Key Research and Development Project(No.ZDYF2024GXJS002)the Research Start-Up Funds of Zhufeng Scholars Program.
文摘Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.
基金Supported by the Prospective and Basic Research Project of PetroChina(2021DJ23)。
文摘In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金supported by the National Natural Science Foundation of China(Grant Nos.52304044,52222402,52234003,52174036)Sichuan Science and Technology Program(Nos.2022JDJQ0009,2023NSFSC0934)+2 种基金Key Technology R&D Program of Shaanxi Province(2023-YBGY-30)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030202)the China Postdoctoral Science Foundation(Grant No.2022M722638)。
文摘Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.
基金funded by projects of the National Natural Science Foundation of China(Nos.:42272167,U19B6003 and 41772153)projects of the Science&Technology Department of Sinopec(Nos.:P22121,P21058-8 and P23167).
文摘The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.
基金a grant from the state of Schleswig-Holstein and the European Union ERDF-European Regional Development Fund(Zukunftsprogramm Wirtschaft)。
文摘Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.
基金Basic research program of Shanxi Province(20210302124136 and 20210302123177)National Key R&D Program of China(2019YFA0705501)+1 种基金Key R&D and promotion projects in Henan Province(212102310010)National Natural Science Foundation of China(52104144,U23B2088).
文摘When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金the Key Project of the National Research Program of China(2020YFB0606201)。
文摘A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
基金funded by the National Natural Science Foundation of China Projects (Grant number 71703128)Anhui Provincial Higher Education Research Key Project (grant number: 2024AH052139)。
文摘Based on the HS 4-digit code trade data in UNCOMTRADE from 1995 to 2020, this paper analyzes the characteristics of the evolution of the global PG trade network using the complex network approach and analyzes the changes in its resilience at the overall and country levels, respectively. The results illustrated that:(1) The scale of the global PG trade network tends to expand, and the connection is gradually tightened, experiencing a change from a “supply-oriented” to a “supply-and-demand” pattern, in which the U.S., Russia, Qatar, and Australia have gradually replaced Canada, Japan, and Russia to become the core trade status, while OPEC countries such as Qatar, Algeria, and Kuwait mainly rely on PG exports to occupy the core of the global supply, and the trade status of other countries has been dynamically alternating and evolving.(2) The resilience of the global PG trade network is lower than that of the random network and decreases non-linearly with more disrupted countries. Moreover, the impact of the U.S. is more significant than the rest of countries. Simulations using the exponential random graph model(ERGM) model revealed that national GDP, institutional quality, common border and RTA network are the determinants of PG trade network formation, and the positive impact of the four factors not only varies significantly across regions and stages, but also increases with national network status.