There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early C...There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early Cretaceous,Paleogene and Neogene.The coal formed in these periods were developed in different coal-accumulating areas(CAA)including the North China,South China,Northwest China,Northeast China,the Qinghai–Tibet area,and China offshore area.In this paper,we investigated depositional environments,sequence stratigraphy,lithofacies paleogeography and coal accumulation pattern of five major coal-accumulating periods including the Late Carboniferous to Middle Permian of the North China CAA,the Late Permian of the South China CAA,the Late Triassic of the South China CAA,the Early-Middle Jurassic of the North and Northwest China CAA,and the Early Cretaceous in the Northeast China CAA.According to distribution of the coal-bearing strata and the regional tectonic outlines,we have identified distribution range of the coal-forming basins,sedimentary facies types and coal-accumulating models.The sequence stratigraphic frameworks of the major coal-accumulating periods were established based on recognition of a variety of sequence boundaries.The distribution of thick coals and migration patterns of the coal-accumulating centers in the sequence stratigraphic framework were analyzed.The lithofacies paleogeography maps based on third-order sequences were reconstructed and the distribution of coal accumulation centers and coal-rich belts were predicted.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 ...The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.展开更多
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ...The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum ...The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to...The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.展开更多
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo...Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.展开更多
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ...Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to E...The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
基金This research was supported by the Project for the Survey of Land and Resources in China(1212010633901)National Natural Science Foundation of China(Grant No.41572090)。
文摘There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early Cretaceous,Paleogene and Neogene.The coal formed in these periods were developed in different coal-accumulating areas(CAA)including the North China,South China,Northwest China,Northeast China,the Qinghai–Tibet area,and China offshore area.In this paper,we investigated depositional environments,sequence stratigraphy,lithofacies paleogeography and coal accumulation pattern of five major coal-accumulating periods including the Late Carboniferous to Middle Permian of the North China CAA,the Late Permian of the South China CAA,the Late Triassic of the South China CAA,the Early-Middle Jurassic of the North and Northwest China CAA,and the Early Cretaceous in the Northeast China CAA.According to distribution of the coal-bearing strata and the regional tectonic outlines,we have identified distribution range of the coal-forming basins,sedimentary facies types and coal-accumulating models.The sequence stratigraphic frameworks of the major coal-accumulating periods were established based on recognition of a variety of sequence boundaries.The distribution of thick coals and migration patterns of the coal-accumulating centers in the sequence stratigraphic framework were analyzed.The lithofacies paleogeography maps based on third-order sequences were reconstructed and the distribution of coal accumulation centers and coal-rich belts were predicted.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
基金supported by National Key Research and Development Program of China(Grant No.2023YFF0804501)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2021069)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB31000000)the Second Comprehensive Scientific Expedition on the Tibetan Plateau(Grant No.2019QZKK0705)the All China Commission of Stratigraphy(Grant No.DD20221829).
文摘The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.
基金funded by projects of the National Natural Science Foundation of China(Nos.:42272167,U19B6003 and 41772153)projects of the Science&Technology Department of Sinopec(Nos.:P22121,P21058-8 and P23167).
文摘The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
基金funded by the State Key Petroleum Lab of Petroleum Resources and Prospecting at China University of Petroleum (Beijing)
文摘The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金funded by the National Natural Science Foundation of China(No.U22B6002)the“14th Five-Year”Forward-looking Basic Science and Technology Project of China National Petroleum Company Limited(No.2022DJ2107).
文摘The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.
基金Supported by the National Natural Science Foundation of China(42090022)。
文摘Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
基金Supported by the CNOOC Major Technology Project During the 14th FIVE-YEAR PLAN PERIOD(KJGG2022-0403)CNOOC Major Technology Project(KJZH-2021-0003-00).
文摘Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金Supported by the National Natural Science Foundation of China(No.92055203)。
文摘The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.