期刊文献+
共找到18,066篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Coal Rank and High Organic Sulfur on the Structure and Optical Properties of Coal-based Graphene Quantum Dots 被引量:11
1
作者 TANG Yuegang HUAN Xuan +1 位作者 LAN Chunyuan XU Miaoxin 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第3期1218-1230,共13页
Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped c... Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped carbon sources for the preparation of S-doped GQDs. The effects of coal properties on coal-based GQDs were analyzed by means of high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), ultraviolet-visible(UV-Vis) absorption spectroscopy, and fluorescence emission spectra. It was shown that all coal samples can be used to prepare GQDs, which emit bluegreen and blue fluorescence under ultraviolet light. Anthracite-based GQDs have a hexagonal crystal structure without defects, the largest size, and densely arranged carbon rings in their lamellae; the highrank bituminous coal-based GQDs are relatively reduced in size, with their hexagonal crystal structure being only faintly visible; the low-rank bituminous coal-based GQDs are the smallest, with sparse lattice fringes and visible internal defects. As the metamorphism of raw coals increases, the yield decreases and the fluorescence quantum yield(QY) initially increases and then decreases. Additionally, the surface of GQDs that were prepared using high-rank SHOS coal(high-rank bituminous coal) preserves rich sulfur content even after strong oxidation, which effectively adjusts the bandgap and improves the fluorescence QY. Thus, high-rank bituminous coal with SHOS content can be used as a natural S-doped carbon source to prepare S-doped GQDs, extending the clean utilization of low-grade coal. 展开更多
关键词 COAL graphene quantum dots coal rank organic sulfur China
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:1
2
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder
3
作者 Siti Nur Ainsyah Ghani Noor Fadiya Mohd Noor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1017-1037,共21页
Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly benef... Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids. 展开更多
关键词 Hybrid nanofluid sutterby fluid tiwari-das model thermal radiation graphene graphene oxides graphene nanoplatelets
下载PDF
Valley-dependent transport in a mescoscopic twisted bilayer graphene device
4
作者 史文萱 刘翰林 汪军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期61-65,共5页
We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with... We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene. 展开更多
关键词 twisted bilayer graphene valley-dependent transport graphene nanoribbon CONDUCTANCE
下载PDF
La内嵌graphene/MoS_(2)层的储氢性能研究
5
作者 任娟 师文婷 +2 位作者 贾若兰 武汉 刘平平 《原子与分子物理学报》 北大核心 2024年第3期91-97,共7页
运用密度泛函理论研究了La内嵌graphene/MoS_(2)层的储氢性能.由于La的内嵌graphene/MoS_(2)异质结的层间距被拉大.详细研究了氢气分子在La内嵌的graphene/MoS_(2)结构上的吸附行为.结果表明,一个La原子最多可以吸附六个氢气分子,采用GG... 运用密度泛函理论研究了La内嵌graphene/MoS_(2)层的储氢性能.由于La的内嵌graphene/MoS_(2)异质结的层间距被拉大.详细研究了氢气分子在La内嵌的graphene/MoS_(2)结构上的吸附行为.结果表明,一个La原子最多可以吸附六个氢气分子,采用GGA/PBE泛函计算得到氢气分子的平均吸附能为0.198 eV.合适的吸附能使得设计材料能够在温和条件下实现可逆存储.重要的是,La原子能够分散地内嵌在graphene/MoS_(2)异质结中,这将为氢气分子提供更多吸附位.研究表明理论上预测La内嵌graphene/MoS_(2)材料是一种潜在的储氢材料. 展开更多
关键词 储氢 graphene/MoS_(2)异质结 密度泛函理论
下载PDF
Valley filtering and valley-polarized collective modes in bulk graphene monolayers
6
作者 郑建龙 翟峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期1-15,共15页
The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree o... The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers,which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review. 展开更多
关键词 valleytronics graphene strain valley-Zeeman effect PLASMONS
下载PDF
Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors
7
作者 Shani Li Yanan Xu +7 位作者 Wenhao Liu Xudong Zhang Yibo Ma Qifan Peng Xiong Zhang Xianzhong Sun Kai Wang Yanwei Ma 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期573-583,共11页
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ... Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance. 展开更多
关键词 Hierarchical carbon framework NANOCAGE ZIF graphene Lithium-ion capacitors
下载PDF
Pillar effect induced by ultrahigh phosphorous/nitrogen doping enables graphene/MXene film with excellent cycling stability for alkali metal ion storage
8
作者 Meng Qin Yiwei Yao +5 位作者 Junjie Mao Chi Chen Kai Zhu Guiling Wang Dianxue Cao Jun Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期146-156,I0004,共12页
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and... Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding. 展开更多
关键词 graphene MXene Phosphorous doping Pillar effect Potassium-ion batteries
下载PDF
Bimodal growth of Fe islands on graphene
9
作者 顾翊晟 俞俏滟 +16 位作者 刘荡 孙蓟策 席瑞骏 陈星森 薛莎莎 章毅 杜宪 宁旭辉 杨浩 管丹丹 刘晓雪 刘亮 李耀义 王世勇 刘灿华 郑浩 贾金锋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期553-557,共5页
Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning ... Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning tunneling microscopy. The two types of islands distinguished by flat or round tops are revealed, indicating bimodal growth of Fe. The atomic structures on the top surfaces of flat islands are also clearly resolved. Our results may improve the understanding of the mechanisms of metals deposited on graphene and pave the way for future spintronic applications of Fe/graphene systems. 展开更多
关键词 graphene MAGNETISM molecular beam epitaxy scanning tunneling microscopy
下载PDF
A green cross-linking method for the preparation of renewable threedimensional graphene sponges for efficient adsorption of Congo red dye
10
作者 Zhuang Liu Bo Gao +3 位作者 Haoyuan Han Yuling Li Haiyang Fu Donghui Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期84-93,共10页
Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high prepar... Graphene-based materials possess significant potential for the treatment of dye wastewater due to their exceptional adsorption properties toward stubborn pollutants.However,their utilization is hindered by high preparation costs,low yields,environmental pollution during synthesis,and challenges in regenerating the adsorbent.This study proposes a novel approach to address these limitations by developing nitrogen-doped three-dimensional(3D)polyvinyl alcohol(PVA)crosslinked graphene sponges(N-PGA)using a cross-linking method with ammonium carbonate.This method offers a relatively mild,environmentally friendly approach.Ammonium carbonate serves as both a reducing and modifying agent,facilitating the formation of the intrinsic structure of N-PGA and acting as a nitrogen source.Meanwhile,PVA is utilized as the cross-linking agent.The results demonstrate that N-PGA exhibits a favorable internal 3D hierarchical porous structure and possesses robust mechanical properties.The measured specific surface area(BET)of N-PGA was as high as406.538 m^(2)·g^(-1),which was favorable for its efficient adsorption of Congo red(CR)dye molecules.At an initial concentration of 50 mg·L^(-1),N-PGA achieved an impressive removal rate of 89.6%and an adsorption capacity of 112 mg·g^(-1)for CR dye.Furthermore,it retained 79%of its initial adsorption capacity after 10 cycles,demonstrating excellent regeneration performance.In summary,the synthesized N-PGA displays remarkable efficacy in the adsorption of CR dye in wastewater,opening up new possibilities for utilizing 3D porous graphene nanomaterials as efficient adsorbents in wastewater treatment. 展开更多
关键词 Green chemistry graphene sponge Adsorbents ADSORPTION Congo red Regeneration
下载PDF
Progress on the application of graphene-based composites toward energetic materials:A review
11
作者 Ting Zhang Xiaoming Gao +4 位作者 Jiachen Li Libai Xiao Hongxu Gao Fengqi Zhao Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期95-116,共22页
Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and ... Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials. 展开更多
关键词 graphene Desensitization Thermal decomposition Catalytic combustion Energetic materials
下载PDF
Graphene-calcium carbonate coating to improve the degradation resistance and mechanical integrity of a biodegradable implant
12
作者 Lokesh Choudhary Parama Chakraborty Banerjee +5 位作者 R.K.Singh Raman Derrek E.Lobo Christopher D.Easton Mainak Majumder Frank Witte Jörg F.Löffler 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期394-404,共11页
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ... Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field. 展开更多
关键词 graphene coating Biodegradable implant HYDROXYAPATITE Corrosion Magnesium alloy
下载PDF
Actively tuning anisotropic light-matter interaction in biaxial hyperbolic materialα-MoO_(3) using phase change material VO_(2) and graphene
13
作者 周昆 胡杨 +2 位作者 吴必园 仲晓星 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期631-638,共8页
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob... Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials. 展开更多
关键词 light-matter interaction hyperbolic material phase change material graphene
下载PDF
Highly Thermoconductive,Strong Graphene‑Based Composite Films by Eliminating Nanosheets Wrinkles
14
作者 Guang Xiao Hao Li +2 位作者 Zhizhou Yu Haoting Niu Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期328-340,共13页
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros... Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices. 展开更多
关键词 graphene Aramid nanofiber Wrinkles elimination In-plane stretching Thermal conductivity
下载PDF
Mussel-inspired Methacrylic Gelatin-dopamine/Ag Nanoparticles/Graphene Oxide Hydrogels with Improved Adhesive and Antibacterial Properties for Applications as Wound Dressings
15
作者 宿正楠 HU Yanru +5 位作者 MENG Lihui OUYANG Zhiyuan LI Wenchao ZHU Fang XIE Bin 吴庆知 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti... A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment. 展开更多
关键词 GelMA dopamine graphene oxide adhesion antibacterial ability
下载PDF
Bending results of graphene origami reinforced doubly curved shell
16
作者 Nan Yang Yunhe Zou Mohammad Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期198-210,共13页
The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjec... The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results. 展开更多
关键词 graphene origami Copper matrix Doubly curved Shear deformable Auxetic metamaterial
下载PDF
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
17
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
18
作者 黄妍 周涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期650-654,共5页
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair... Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results. 展开更多
关键词 SUPERCONDUCTIVITY magnetic field induction pairing symmetry Bernal bilayer graphene
下载PDF
Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations
19
作者 Xinyu Zhang Wenjie Xia +2 位作者 Yang Wang Liang Wang Xiaofeng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3047-3061,共15页
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil... Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications. 展开更多
关键词 graphene aerogel molecular dynamics simulation impact response energy absorption
下载PDF
Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
20
作者 周偲 袁少康 +8 位作者 朱登玉 白宇明 王韬 刘福福 潘禄禄 冯存芳 张博涵 何大平 汪胜祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期618-622,共5页
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un... The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment. 展开更多
关键词 enhanced resonance frequency magnetic resonance field flexible graphene substrate
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部