期刊文献+
共找到18,462篇文章
< 1 2 250 >
每页显示 20 50 100
Application of Seismic Anisotropy Caused by Fissures in Coal Seams to the Detection of Coal-bed Methane Reservoirs 被引量:2
1
作者 LIU Mei GOU Jingwei +1 位作者 YU Guangming LIN Jiandong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期425-428,共4页
Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the ... Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure. 展开更多
关键词 coal-bed methane coal-seam fissure ANISOTROPY splitting of S wave
下载PDF
Coal-Bed Methane Resource of Mesozoic Basins in Jiamusi Landmass 被引量:3
2
作者 Cao Chengrun Wu Wei Zheng Qingdao 《Global Geology》 2002年第2期138-141,共4页
As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongj... As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongjiang Province. Theresult of the resource assessment revealed that the total resource less than 1 500 m,s depth in the area is about 2 100×108m3. It shows that Jiamusi landmass has great potential of coal-bed gas and is one of the most prospecting districts for developing coal-bed gas in CBM-province Northeast China. 展开更多
关键词 coal-bed methane Basin Mesozoic . Jiamusi landmass
下载PDF
A Comprehensive Appraisal on the Characteristics of Coal-Bed Methane Reservoir in Turpan-Hami Basin 被引量:10
3
作者 TANG Shu-heng WANG Yan-bin ZHANG Dai-sheng 《Journal of China University of Mining and Technology》 EI 2007年第4期521-525,545,共6页
The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ge... The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line. 展开更多
关键词 煤床 瓦斯 储蓄量 盆地
下载PDF
The experiment study on slippage effect of the coal-bed methane transfusion
4
作者 彭晓华 潘一山 +1 位作者 肖晓春 陈长华 《Journal of Coal Science & Engineering(China)》 2008年第4期530-533,共4页
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa... When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect. 展开更多
关键词 煤层 透气性系数 测定 低渗透气藏 数值模拟
下载PDF
Effects of micropore structure of activated carbons on the CH_(4)/N_(2) adsorption separation and the enrichment of coal-bed methane 被引量:1
5
作者 Jinhua Zhang Lanting Li Qiang Qin 《Clean Energy》 EI 2021年第2期329-338,共10页
In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series... In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen. 展开更多
关键词 coal-bed methane CH_(4) vacuum pressure swing adsorption activated carbon
原文传递
Screening the optimal Co_(x)/CeO_(2)(110)(x=1–6)catalyst for methane activation in coalbed gas
6
作者 Li’nan Huang Danyang Li +3 位作者 Lei Jiang Zhiqiang Li Dong Tian Kongzhai Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期256-271,共16页
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,... The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions. 展开更多
关键词 Co cluster growth Ce-based catalysts methane activation DFT
下载PDF
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
7
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas methane Oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
Methane Emission from Rice Fields:Necessity for Molecular Approach for Mitigation
8
作者 Sujeevan RAJENDRAN Hyeonseo PARK +6 位作者 Jiyoung KIM Soon Ju PARK Dongjin SHIN Jong-Hee LEE Young Hun SONG Nam-Chon PAEK Chul Min KIM 《Rice science》 SCIE CSCD 2024年第2期159-178,共20页
Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic cond... Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants. 展开更多
关键词 methane emission rice breeding AERENCHYMA greenhouse gas radial oxygen loss
下载PDF
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel
9
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling Micro segment analysis
下载PDF
Machine learning-driven optimization of plasma-catalytic dry reforming of methane
10
作者 Yuxiang Cai Danhua Mei +2 位作者 Yanzhen Chen Annemie Bogaerts Xin Tu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期153-163,共11页
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz... This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes. 展开更多
关键词 Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production
下载PDF
Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal
11
作者 Junjie Cai Xijian Li +1 位作者 Hao Sui Honggao Xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期122-131,共10页
The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex... The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources. 展开更多
关键词 Tectonic coal Multiscale pore structure methane adsorption Micropore filling MONOLAYER Molecular simulation
下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China
12
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity Ordos Basin
下载PDF
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
13
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions Low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Decorating Single-Atom Catalysts with CO for Efficient Methane Conversion
14
《Bulletin of the Chinese Academy of Sciences》 2024年第1期48-48,共1页
Direct methane conversion has advantages such as low energy consumption,less processes,and being more economical.However,it is difficult to activate methane at room temperature due to the high dissociation energy of C... Direct methane conversion has advantages such as low energy consumption,less processes,and being more economical.However,it is difficult to activate methane at room temperature due to the high dissociation energy of C-H bonds of methane.Additionally,the target products,such as methanol,acetic acid,and other oxygenates,are prone to overoxidation,resulting in the generation of CO_(2).Therefore,the design of catalysts with high activity and selectivity is important. 展开更多
关键词 methane BONDS methanOL
下载PDF
Methanation of CO/CO_(2)for power to methane process:Fundamentals,status,and perspectives 被引量:1
15
作者 Jie Ren Hao Lou +3 位作者 Nuo Xu Feng Zeng Gang Pei Zhandong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期182-206,I0005,共26页
Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective soluti... Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective solution for energy storage.However,the fluctuating electricity from intermittent renewable energy leads to a dynamic composition of reactants for downstream methanation,which requires an excellent heterogeneous catalyst to withstand the harsh conditions.Based on these findings,the objective of this review is to classify the fundamentals and status of CO/CO_(2)methanation and identify the pathways in the presence of various catalysts for methane production.In addition,this review sheds insight into the future development and challenges of CO_(2)or CO methanation,including the deactivation mechanisms and catalyst performance under dynamically harsh conditions.Finally,we elaborated on the advantages and development prospects of P2M,and then we summarized the current stage and ongoing industrialization projects of P2M. 展开更多
关键词 Power-to-methane CO methanation CO_(2)methanation Heterogeneous catalyst methanation mechanism
下载PDF
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
16
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking Dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
下载PDF
Selective Hydrogenation of Polycyclic Aromatics to Monocyclic Aromatics over NiMoC/HβCatalysts in a Methane and Hydrogen Environment 被引量:1
17
作者 Shen Zhibing Fu Rao +7 位作者 Zhang Shangli Wang Shunmei Zhang Wu Tang Ruiyuan Liang Shengrong Zhang Juntao Yuan Shibao Jiang Haiyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期92-100,共9页
To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can partic... To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can participate in the reaction,supply methyl side chains to the product,and improve product distribution.In this study,the hydrogenation reaction of polycyclic aromatic hydrocarbons over a carbonized NiMo/Hβcatalyst in a CH_(4)and hydrogen(H_(2))environment was investigated to study the promotional effect of CH_(4)on the hydrocracking of polycyclic aromatics.Under conditions of 3.5 MPa,380℃,volume air velocity of 4 h^(-1),gas-oil volume ratio of 800,and H_(2):CH_(4)molar ratio of 1:1,the conversion rate of naphthalene was 99.97%,the liquid phase yield was 93.62%,and the selectivity of BTX were 17.76%,25.17%,and 20.47%,respectively.In comparison to the use of a H_(2)atmosphere,the selectivity of benzene was significantly decreased,whereas the selectivity of toluene and xylene were increased.It was shown that CH_(4)can participate in the hydrocracking of naphthalene and improve the selectivity of toluene and xylene in the liquid product.The carbonized NiMo/Hβcatalyst was characterized by a range of analytical methods(such as X-ray diffraction(XRD),ammonia-temperature-programmed desorption(NH3-TPD),hydrogen-temperature-programmed reduction(H_(2)-TPR),and X-ray photoelectron spectroscopy(XPS)).The results indicated that Ni and Mo carbides were the major species in the carbonized NiMo/Hβcatalyst and were considered to be active sites for the activation of CH_(4)and H_(2).After loading the metal components,the catalyst displayed prominent weak acidic sites,which may be suitable locations for cracking,alkylation,and other related reactions.Therefore,the carbonized NiMo/Hβcatalyst displayed multiple functions during the hydrocracking of polycyclic aromatic hydrocarbons in a CH_(4)and H_(2)environment.These results could be used to develop a new way to efficiently utilize polycyclic aromatic hydrocarbons and natural gas resources. 展开更多
关键词 methane polycyclic aromatic hydrocarbons HYDROCRACKING NiMoC/Hβ TOLUENE XYLENE
下载PDF
Dietary supplementation with xylooligosaccharides and exogenous enzyme improves milk production,energy utilization efficiency and reduces enteric methane emissions of Jersey cows 被引量:1
18
作者 Lifeng Dong Lei Zhao +5 位作者 Bowei Li Yanhua Gao Tianhai Yan Peter Lund Zhuofan Liu Qiyu Diao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2514-2524,共11页
Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to in... Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows. 展开更多
关键词 Energy utilization efficiency Enteric methane emissions Exogenous enzyme Jersey cows XYLOOLIGOSACCHARIDES
下载PDF
Interactions of Microplastics and Methane Seepage in the Deep-Sea Environment 被引量:1
19
作者 Jing-Chun Feng Zhifeng Yang +8 位作者 Wenliang Zhou Xingwei Feng Fuwen Wei Bo Li Chuanxin Ma Si Zhang Linlin Xia Yanpeng Cai Yi Wang 《Engineering》 SCIE EI CAS CSCD 2023年第10期159-167,共9页
Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated... Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates. 展开更多
关键词 Microplastics Anaerobic oxidation of methane Cold seeps Diversity index FRAGMENTATION Gas hydrates
下载PDF
High surface area biocarbon monoliths for methane storage 被引量:1
20
作者 Elizabeth Michaelis Renfeng Nie +1 位作者 Douglas Austin Yanfeng Yue 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1308-1324,共17页
New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable... New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage. 展开更多
关键词 Activated carbon Carbon monolith methane storage High surface area Activation agent
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部