The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carrie...The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.展开更多
Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property a...Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure.展开更多
Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used...Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.展开更多
Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equatio...Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equation has been fuzzily considered and the mechanism of interaction for coal aromatics and methane gas molecules has not been understood. Then these problems have been discussed in this paper applied the principle of statistical thermo mechanics and quantum chemistry as well as based on the numerical calculating of experiential data in quantum chemistry. Therefore, it is revealed by research results that the experience state equation for real methane gas in coal, which is put forward in this paper, is closer to actual situation and the interaction process for methane gas adsorption on the surface of coal aromatics can be formulated by Morse potential function. Furthermore it is most stable through this research that the structural mould for methane gas molecule adsorption on the surface of coal nuclear with one gas molecule on top of another aromatics in regular triangle cone has been understood, and it is a physical adsorption for methane gas adsorption with single layer molecule on the surface of coal nuclear.展开更多
Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integr...Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.展开更多
Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the ...Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.展开更多
Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust expl...Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions,a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts(800 nm,1200 nm,45μm,60μm,and 75μm)at five concentrations(100 g/m3,250 g/m3,500 g/m3,750 g/m3,and 1000 g/m3).The explosion pressure characteristics were closely related to the coal dust particle size and concentration.The maximum explosion pressure,maximum rate of pressure rise,and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart,indicating that a nano-sized coal dust explosion is more dangerous.The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s),indicating weak explosibility.When 7%methane was added to the air,the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s),indicating very strong explosibility.This indicates that adding methane to the coal dust mixture substantially increased the hazard grade.展开更多
The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the...The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline.展开更多
Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary c...Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners.展开更多
The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to b...The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.展开更多
Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination betwe...Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future.展开更多
The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the da...The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the data from mine methane drainage roadway explosion,and mine methane and coal dust explosion propagation ex- perimental studies,the numerical emulator system of mine methane and coal dust explo- sion software was developed by using prevalent flow simulation platform,which can be used to simulate the explosion accidents process effectively.In addition,the system can also be used to determine whether coal dust involved in the explosion,and to simulate accurately the transition from deflagration to detonation in methane explosion,propagation velocity of explosion shock,attenuation pattern,and affected area of explosion.展开更多
Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity ...Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity of CBM wells(Wei Yingchun et al.,2013).Therefore,the production problems of CBM wells caused by coal fines have attracted extensive attention.展开更多
The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of under...The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of underground methane drainage.In this work,the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth.The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively.Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones,and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone.Moreover,sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance.Considering these findings,a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period.The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage,thereby improving considerably the drainage and utilization rates of CMM.展开更多
Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presente...Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out.展开更多
In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in q...In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in question, occurring for example in the Bowen Basin(Australia) or the Upper Silesian Coal Basin(Poland). Among numerous properties and parameters, the following are very essential: susceptibility of coal beds to deformation connected with coal stress state change and contemporary shrinkage of the coal matrix during methane desorption. Those adverse geo-mechanical and physical-chemical effects are accompanied by essential change of the porous coal structure, which under these disadvantageous conditions is very complex. This study aims to show difficulties, which occur in phase of recognition of the methane-reach coal deposit. Volume absorbed methane(not surface adsorbed) in sub-micropores having minimal size comparable with gas molecule diameter must possess energy allowing separation of the nodes and methane release to micropores.展开更多
Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more att...Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established.展开更多
The importance of simultaneous coal and methane extraction and its significance on green exploitation is stated, and current research situation of simultaneous coal and methane and faced new problems are introduced. T...The importance of simultaneous coal and methane extraction and its significance on green exploitation is stated, and current research situation of simultaneous coal and methane and faced new problems are introduced. The research progress on movement of overlying strata and stresses change in them, cracks development during mining in overlying strata and meth- ane emission under disturbance of mining as well as the changing rules of permeability and methane flow under the disturbance of mining is analyzed. The progress on practice of simultaneous coal and methane extraction is analyzed. The deficiencies of current research and further researching fields on simultaneous coal and methane extraction are pointed out.展开更多
There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floo...There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floor sub-economic seams has the greatest share in total methane emission to workings. Effective CMM (coal mine methane) capture is used from goaf in advance or after mining. However, due to longwall mining and ventilation systems, it is not always possible to capture methane from strata. This paper presents a method of increasing the permeability of coal seams and a method of drilling boreholes towards goaf. Initial results of the effectiveness of methane capture after applying these methods are presented.展开更多
At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the...At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization.展开更多
基金Supported by the National Natural Science Foundation of China (50874040 50904026) the Scientific Research Fund of Heilongjiang Provincial Education Department (11551420)
文摘The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.
基金financially supported by the National Basic Research Program of China(No.2011CB201203)the National Natural Science Foundation of China(Nos.51204217 and 51374256)+1 种基金the National Major Science and Technology Projects of China(Nos.2011ZX05034-004 and 2011ZX05040-001-005)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201212)
文摘Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure.
基金The financial supports received from the National Natural Science Foundation of China(21522609,21636009 and 21878328)the National Key Research and Development Program of China(Nos.2017YFC0307302,2016YFC0304003)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462018BJC004)Beijing Science and Technology Program,China(No.Z181100005118010)。
文摘Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.
文摘Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equation has been fuzzily considered and the mechanism of interaction for coal aromatics and methane gas molecules has not been understood. Then these problems have been discussed in this paper applied the principle of statistical thermo mechanics and quantum chemistry as well as based on the numerical calculating of experiential data in quantum chemistry. Therefore, it is revealed by research results that the experience state equation for real methane gas in coal, which is put forward in this paper, is closer to actual situation and the interaction process for methane gas adsorption on the surface of coal aromatics can be formulated by Morse potential function. Furthermore it is most stable through this research that the structural mould for methane gas molecule adsorption on the surface of coal nuclear with one gas molecule on top of another aromatics in regular triangle cone has been understood, and it is a physical adsorption for methane gas adsorption with single layer molecule on the surface of coal nuclear.
基金supported by the National Natural Science Foundation of China(Grant No.51176051)the PetroChina Innovation Foundation(2012D- 5006-0210)the Colleges and Universities High-level Talents Program of Guangdong
文摘Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.
文摘Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.
基金This research was supported by the National Key Research and Development Program of China(2016YFC0801800)the National Nature Science Foundation of China(51774291,51864045).
文摘Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions,a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts(800 nm,1200 nm,45μm,60μm,and 75μm)at five concentrations(100 g/m3,250 g/m3,500 g/m3,750 g/m3,and 1000 g/m3).The explosion pressure characteristics were closely related to the coal dust particle size and concentration.The maximum explosion pressure,maximum rate of pressure rise,and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart,indicating that a nano-sized coal dust explosion is more dangerous.The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s),indicating weak explosibility.When 7%methane was added to the air,the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s),indicating very strong explosibility.This indicates that adding methane to the coal dust mixture substantially increased the hazard grade.
基金supported by the National Basic Research Program of China(Nos.2009CB219603,2010CB226800,2009CB724601 and 2012BAC10B03)the National Natural Science Foundation of China(Major Program)(Nos.50490271 and 40672104)+2 种基金the National Natural Science Foundation of China(General Program)(No.40874071)the National Science&Technology Pillar Program in the Eleventh Five-Year Plan Period(Nos.2012BAB13B01 and2012BAC10B03)the Key Grant Project of Chinese Ministry of Education(No.306002)
文摘The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline.
基金supported by the National Natural Science Foundation of China (No.50534090)the Science Foundation of China University of Mining and Technology (No.0E061046)
文摘Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners.
基金Supported by the CNPC Huabei Oilfield Science and Technology Development Project(HBYT-CYY-2014-JS-378,HBYT-CYY-2015-JS-47)
文摘The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.
基金supported by the Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxmX0836)the Fundamental Research Funds for the Central Universities(No.2020CDJ-LHZZ-002)the National Natural Science Foundation of China(No.52074041).
文摘Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future.
文摘The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the data from mine methane drainage roadway explosion,and mine methane and coal dust explosion propagation ex- perimental studies,the numerical emulator system of mine methane and coal dust explo- sion software was developed by using prevalent flow simulation platform,which can be used to simulate the explosion accidents process effectively.In addition,the system can also be used to determine whether coal dust involved in the explosion,and to simulate accurately the transition from deflagration to detonation in methane explosion,propagation velocity of explosion shock,attenuation pattern,and affected area of explosion.
基金financially supported by the National Natural Science Foundation of China(grants No.41402134 and 41272181)
文摘Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity of CBM wells(Wei Yingchun et al.,2013).Therefore,the production problems of CBM wells caused by coal fines have attracted extensive attention.
基金This research was supported by the National Natural Science Foundation of China(51974300)the Fundamental Research Funds for the Central Universities(2021YCPY0206 and 2020ZDPY0224)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_2467),and as a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of underground methane drainage.In this work,the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth.The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively.Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones,and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone.Moreover,sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance.Considering these findings,a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period.The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage,thereby improving considerably the drainage and utilization rates of CMM.
文摘Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out.
基金sponsored by statutory research University of Science and Technology AGH,Cracow,Poland(No.11 100 281)
文摘In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in question, occurring for example in the Bowen Basin(Australia) or the Upper Silesian Coal Basin(Poland). Among numerous properties and parameters, the following are very essential: susceptibility of coal beds to deformation connected with coal stress state change and contemporary shrinkage of the coal matrix during methane desorption. Those adverse geo-mechanical and physical-chemical effects are accompanied by essential change of the porous coal structure, which under these disadvantageous conditions is very complex. This study aims to show difficulties, which occur in phase of recognition of the methane-reach coal deposit. Volume absorbed methane(not surface adsorbed) in sub-micropores having minimal size comparable with gas molecule diameter must possess energy allowing separation of the nodes and methane release to micropores.
文摘Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established.
基金Supported by the National Science Foundation of China (51304006) the Key Project of Anhui Provincial Department of Education (KJ2011A075) the Youth Backbone Training Funds of Anhui University of Science &Technology (20120012)
文摘The importance of simultaneous coal and methane extraction and its significance on green exploitation is stated, and current research situation of simultaneous coal and methane and faced new problems are introduced. The research progress on movement of overlying strata and stresses change in them, cracks development during mining in overlying strata and meth- ane emission under disturbance of mining as well as the changing rules of permeability and methane flow under the disturbance of mining is analyzed. The progress on practice of simultaneous coal and methane extraction is analyzed. The deficiencies of current research and further researching fields on simultaneous coal and methane extraction are pointed out.
文摘There is very low permeability of coal seams in Polish coal mines. For this reason, pre-mining methane drainage is conducted to a small extent, which rarely brings expected results. Methane emission from roof and floor sub-economic seams has the greatest share in total methane emission to workings. Effective CMM (coal mine methane) capture is used from goaf in advance or after mining. However, due to longwall mining and ventilation systems, it is not always possible to capture methane from strata. This paper presents a method of increasing the permeability of coal seams and a method of drilling boreholes towards goaf. Initial results of the effectiveness of methane capture after applying these methods are presented.
基金Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant No. 70971129) and Soft Science Project (Grant No. 2008041036-02). The authors would like to thank anonymous reviewers for their helpful comments.
文摘At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization.