In this paper,for 1<p<∞,the authors show that the coarse l^(p)-Novikov conjecture holds for metric spaces with bounded geometry which are coarsely embeddable into a Banach space with Kasparov-Yu’s Property(H).
The notion of an ideal family of weighted subspaces of a discrete metric space X with bounded geometry is introduced. It is shown that, if X has Yu’s property A, the ideal structure of the Roe algebra of X with coeff...The notion of an ideal family of weighted subspaces of a discrete metric space X with bounded geometry is introduced. It is shown that, if X has Yu’s property A, the ideal structure of the Roe algebra of X with coefficients in B(H) is completely characterized by the ideal families of weighted subspaces of X, where B(H) denotes the C*-algebra of bounded linear operators on a separable Hilbert space H.展开更多
This paper discusses "geometric property(T)". This is a property of metric spaces introduced in earlier works of the authors for its applications to K-theory. Geometric property(T) is a strong form of "...This paper discusses "geometric property(T)". This is a property of metric spaces introduced in earlier works of the authors for its applications to K-theory. Geometric property(T) is a strong form of "expansion property", in particular, for a sequence(Xn)of bounded degree finite graphs, it is strictly stronger than(Xn) being an expander in the sense that the Cheeger constants h(Xn) are bounded below.In this paper, the authors show that geometric property(T) is a coarse invariant,i.e., it depends only on the large-scale geometry of a metric space X. The authors also discuss how geometric property(T) interacts with amenability, property(T) for groups,and coarse geometric notions of a-T-menability. In particular, it is shown that property(T) for a residually finite group is characterised by geometric property(T) for its finite quotients.展开更多
Let X be a noncompact discrete metric space with bounded geometry. Associated with X are two C*-algebras, the so-called uniform Roe algebra B*(X) and coarse Roe algebra C*(X), which arose from the index theory on nonc...Let X be a noncompact discrete metric space with bounded geometry. Associated with X are two C*-algebras, the so-called uniform Roe algebra B*(X) and coarse Roe algebra C*(X), which arose from the index theory on noncompact complete Riemannian manifolds. In this paper, we describe the quasidiagonality of B*(X) and C*(X) in terms of coarse geometric invariants. Some necessary and suficient conditions are given, which involve the Fredholm index and coarse connectedness of metric spaces.展开更多
The author constructs a sequence of cubes in the infinitely dimensional hyperbolic space H∞ which is equi-coarsely equivalent to Z2n. As a corollary, it is proved that the infinitely dimensional hyperbolic space H∞ ...The author constructs a sequence of cubes in the infinitely dimensional hyperbolic space H∞ which is equi-coarsely equivalent to Z2n. As a corollary, it is proved that the infinitely dimensional hyperbolic space H∞ does not have property A.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12171156)the Science and Technology Commission of Shanghai Municipality(No.22DZ2229014)。
文摘In this paper,for 1<p<∞,the authors show that the coarse l^(p)-Novikov conjecture holds for metric spaces with bounded geometry which are coarsely embeddable into a Banach space with Kasparov-Yu’s Property(H).
基金Project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200416)the Program for New Century Excellent Talents in University of China (No. 06-0420)+2 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars (No.2008-890)the Dawn Light Project of Shanghai Municipal Education Commission (No. 07SG38)the Shanghai Pujiang Program (No. 08PJ14006).
文摘The notion of an ideal family of weighted subspaces of a discrete metric space X with bounded geometry is introduced. It is shown that, if X has Yu’s property A, the ideal structure of the Roe algebra of X with coefficients in B(H) is completely characterized by the ideal families of weighted subspaces of X, where B(H) denotes the C*-algebra of bounded linear operators on a separable Hilbert space H.
基金supported by the U.S.National Science Foundation(Nos.DMS1229939,DMS1342083,DMS1362772)
文摘This paper discusses "geometric property(T)". This is a property of metric spaces introduced in earlier works of the authors for its applications to K-theory. Geometric property(T) is a strong form of "expansion property", in particular, for a sequence(Xn)of bounded degree finite graphs, it is strictly stronger than(Xn) being an expander in the sense that the Cheeger constants h(Xn) are bounded below.In this paper, the authors show that geometric property(T) is a coarse invariant,i.e., it depends only on the large-scale geometry of a metric space X. The authors also discuss how geometric property(T) interacts with amenability, property(T) for groups,and coarse geometric notions of a-T-menability. In particular, it is shown that property(T) for a residually finite group is characterised by geometric property(T) for its finite quotients.
基金supported by National Natural Science Foundation of China (Grant No. 10871140)
文摘Let X be a noncompact discrete metric space with bounded geometry. Associated with X are two C*-algebras, the so-called uniform Roe algebra B*(X) and coarse Roe algebra C*(X), which arose from the index theory on noncompact complete Riemannian manifolds. In this paper, we describe the quasidiagonality of B*(X) and C*(X) in terms of coarse geometric invariants. Some necessary and suficient conditions are given, which involve the Fredholm index and coarse connectedness of metric spaces.
基金supported by the National Natural Science Foundation of China(No.10731020)the Shanghai Pujiang Program(No.08PJ14006)
文摘The author constructs a sequence of cubes in the infinitely dimensional hyperbolic space H∞ which is equi-coarsely equivalent to Z2n. As a corollary, it is proved that the infinitely dimensional hyperbolic space H∞ does not have property A.