期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrogeological feasibility of mine water deep geological storage in Baotashan coarse sandstone:A case study in Ordos Basin
1
作者 Ge Chen Yajun Sun +1 位作者 Zhimin Xu Xin Li 《Deep Underground Science and Engineering》 2022年第2期148-164,共17页
For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.Howe... For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.However,up to now,little academic research has been done on mine water geological storage.Given this situation,the hydrogeological feasibility of MWDGS was explored in Baotashan coarse sandstone(BCS)of Jurassic measure in Ordos Basin.The results show that the white-gray BCS with a fragile skeleton of quartz(41.4%),feldspar(21.1%),and clay minerals(16.4%)provides the potential variable-void for mine water;and its hydro-chemical type of BCS aquifer is CO_(3)-Na and Cl-Na.As the burial depth increases,the strong alkaline groundwater is in stagnant and poor recharge-runoff-discharge condition.The lab test shows that the pores whose diameter is over 10μm could be treated as the main storage of mine water;and the effective porosity varies from 1.36%to 3.46%.When mine water is injected,the strong hydrodynamics of mine water storage would change the permeability significantly and about 0.201%soluble solids would be dissolved.Partial clay minerals obstruct the pores and induce the saturated phase of high permeability to evolve into steady phase of lower permeability.Under the condition of nonhydraulic fracturing during continuous storage,the heterogeneous anisotropic medium obtained by Transition PRObability GeoStatistics(TPROGS)shows that the capacity of BCS aquifer is 0.455 to 1.226Mm^(3)for 1 km^(2)in the study area.The simulation shows that the groundwater mound in well-scale and mine-scale would be formed.The groundwater quality characteristics of“Three Zone”would occur around and gradually drop to approximate the original brine within 10 years.The hydrogeological feasibility reveals that this approach is useful for the well design and groundwater environment management during the mine water deep geological storage project in the Ordos basin. 展开更多
关键词 Baotashan coarse sandstone deep geological storage hydro-geological evolution mine water water-rock interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部