期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array
1
作者 Naijin Chen Fei Cheng +2 位作者 Chenghao Han Jianhui Jiang Xiaoqing Wen 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第2期330-343,共14页
To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element fragmen... To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element fragmentation.Under the constraint of a reconfigurable array,the LSLGM algorithm schedules node from a ready queue to the current reconfigurable cell array block.After mapping a node,its successor’s indegree value will be dynamically updated.If its successor’s indegree is zero,it will be directly scheduled to the ready queue;otherwise,the predecessor must be dynamically checked.If the predecessor cannot be mapped,it will be scheduled to a blocking queue.To dynamically adjust the ready node scheduling order,the scheduling function is constructed by exploiting factors,such as node number,node level,and node dependency.Compared with the loop subgraph-level mapping algorithm,experimental results show that the total cycles of the LSLGM algorithm decreases by an average of 33.0%(PEA44)and 33.9%(PEA_(7×7)).Compared with the epimorphism map algorithm,the total cycles of the LSLGM algorithm decrease by an average of 38.1%(PEA_(4×4))and 39.0%(PEA_(7×7)).The feasibility of LSLGM is verified. 展开更多
关键词 Grid coarse-grained reconfigurable array(Gcgra) mapping loop subgraph scheduling
原文传递
Energy-efficient reconfigurable processor for QC-LDPC via adaptive coding-voltage-frequency tuning
2
作者 Chang Libo Hu Yiqing +1 位作者 Du Huimin Wang Jihe 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第2期72-84,共13页
To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC alg... To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC algorithm.The data-level parallelism is improved by instructions to dynamically configure the multi-core computing units.Simultaneously,an intelligent adjustment strategy based on a programmable wake-up controller(WuC)is designed so that the computing mode,operating voltage,and frequency of the QC-LDPC algorithm can be adjusted.This adjustment can improve the computing efficiency of the processor.The QC-LDPC processors are verified on the Xilinx ZCU102 field programmable gate array(FPGA)board and the computing efficiency is measured.The experimental results indicate that the QC-LDPC processor can support two encoding lengths of three typical QC-LDPC algorithms and 20 adaptive operating modes of operating voltage and frequency.The maximum efficiency can reach up to 12.18 Gbit/(s·W),which is more flexible than existing state-of-the-art processors for QC-LDPC. 展开更多
关键词 quasi-cyclic low density parity check(QC-LDPC) dynamic voltage and frequency scaling(DVFS) reconfigurable computing coarse-grained reconfigurable arrays(cgras)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部