期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Preparation and Microstructure of a Si-Mo Fused Slurry Coating on Carbon/Carbon Composites for Oxidation Protection 被引量:3
1
作者 Haitao FANG Jingchuan ZHU and Zhongda YIN School of Materials Science and Engineering, Harbin institute of Technology, Harbin 150001, China Jae-Ho Jeon and Yoo-Dong Hahn Materials Engineering Department, Korea institute of Machinery & Materials, Changwon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期57-58,共2页
A coating of composition Si-40Mo (wt pct) was prepared by fused slurry coating method on the two-dimensional carbon/carbon (2D-C/C) composite to improve oxidation resistance. In the procedure of the fabrication, pure ... A coating of composition Si-40Mo (wt pct) was prepared by fused slurry coating method on the two-dimensional carbon/carbon (2D-C/C) composite to improve oxidation resistance. In the procedure of the fabrication, pure St slurry inner layer in the pre-coating was necessary to apply because of infiltration of liquid Si into the substrate during the sintering. The coating consists of Si continuous phase and MoSi2 particles. In addition, the infiltration of Si into the substrate and the SiC reaction layer between the coating and the C/C composite were observed. Oxidation behavior of coated and uncoated C/C composites was studied in cyclic mode. The oxidation resistance and the thermal shock resistance of the Si-Mo fused slurry coating were quite excellent at 1370℃. 展开更多
关键词 Si Preparation and Microstructure of a Si-Mo Fused slurry coating on Carbon/Carbon Composites for Oxidation Protection Mo
下载PDF
Microstructure and isothermal oxidation of 3Al_2O_3·2SiO_2/SiC coating on high and low density carbon-carbon composites 被引量:1
2
作者 L.GBOLOGAH 熊翔 +2 位作者 郝安林 曾毅 张武装 《Journal of Central South University》 SCIE EI CAS 2013年第1期30-36,共7页
Carbon-carbon composite (C/C) materials are prone to severe oxidation and volatilization problems. To address these issues, mullite (3Al2O3.2SiO2)/silicon carbide (SIC) coatings were deposited on C/C composite s... Carbon-carbon composite (C/C) materials are prone to severe oxidation and volatilization problems. To address these issues, mullite (3Al2O3.2SiO2)/silicon carbide (SIC) coatings were deposited on C/C composite substrates characterized into high and low densities. The coatings were applied by a two-step approach: pack cementation and silica sol based slurry coating processes. The relationship between the microstructure of 3Al2O3·2SiO2/SiC coatings and C/C substrates during isothermal oxidation cycle at 1 500 ℃ was investigated using X-ray diffractometer (XRD) and scanning electron microscope (SEM) mounted with energy dispersive spectrometer (EDS). The results indicate that the density of the substrates has a marked effect on the coatings. Dense, thick and well-bonded coatings are obtained in the high density substrate. After 106 h of isothermal oxidation, the high density substrate with 3Al2O3-2SiO2/SiC coating offers effective protection as compared to low density substrate suffering recession. 展开更多
关键词 MULLITE carbon-carbon composite slurry coating isothermal oxidation
下载PDF
Fabrication of LSGM thin films on porous anode supports by slurry spin coating for IT-SOFC 被引量:3
3
作者 Hong-Yan Sun Wei Sen +2 位作者 Wen-Hui Ma Jie Yu Jian-Jun Yang 《Rare Metals》 SCIE EI CAS CSCD 2015年第11期797-801,共5页
La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) and La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM) powders were synthesized by glycine-nitrate process, and LSGM electrolyte thin film was successfully fabricated on porous anode substrate of LSCM... La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM) and La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM) powders were synthesized by glycine-nitrate process, and LSGM electrolyte thin film was successfully fabricated on porous anode substrate of LSCM by slurry spin coating technology. Some technical parameters for the preparation of LSGM thin films were systematically investigated, including ink composition,sintering temperature, and spin coating times. The electrolyte films with the best compactness and somewhat rough are obtained when the operating parameters are fixed as follows: the content of ethyl cellulose as binder is 5 wt%, the content of terpineol as modifier is 5 wt%, the optimum coating cycle number is 9 times, and the best post-deposition sintering temperature is 1,400 °C for 4 h. 展开更多
关键词 Solid oxide fuel cell slurry spin coating LSGM Thi
原文传递
Advanced electrode processing of lithium ion batteries:A review of powder technology in battery fabrication 被引量:15
4
作者 He Liu Xinbing Cheng +3 位作者 Yan Chong Hong Yuan Jia-Qi Huang Qiang Zhang 《Particuology》 SCIE EI CAS CSCD 2021年第4期56-71,共16页
Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only d... Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials. 展开更多
关键词 Lithium ion batteries Composite electrode processing Powder technology slurry coating and drying Electrode calendering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部