Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in...Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.展开更多
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and...We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating r...The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due t...The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment.展开更多
Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further devel...Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.展开更多
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface...High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.展开更多
Owing to the popularization of coating technology, physical Vapor Deposition (PVD) coated tools have become indispensable in the cutting process. Additionally, the post-treatment of coated tools applied to industrial ...Owing to the popularization of coating technology, physical Vapor Deposition (PVD) coated tools have become indispensable in the cutting process. Additionally, the post-treatment of coated tools applied to industrial production can efectively enhance the surface quality of coating. To improve the processing performance of coated tools, micro abrasive slurry jet (MASJ) polishing technology is frst applied to the post-treatment of coated tools. Subsequently, the efects of process parameters on the surface quality and cutting thickness of coating are investigated via single-factor experiments. In the experiment, the best surface roughness is obtained by setting the working pressure to 0.4 MPa, particle size to 3 μm, incidence angle to 30°, and abrasive mass concentration to 100 g/L. Based on the results of the single-factor experiments, combination experiments are designed, and three types of coated tools with diferent surface qualities and coating thicknesses are obtained. The MASJ process for the post-treatment of coated tools is investigated based on a tool wear experiment and the efects of cutting parameters on the cutting force and workpiece surface quality of three types of cutting tools. The result indicates that MASJ machining can efectively improve the machining performance of coated tools.展开更多
Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However...Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance.展开更多
A cold method was used to prepare coated sand for application in the selective laser sintering(SLS)process.Tensile strength,loss on ignition,gas evolution,and accuracy of the SLS samples were tested and analyzed,and t...A cold method was used to prepare coated sand for application in the selective laser sintering(SLS)process.Tensile strength,loss on ignition,gas evolution,and accuracy of the SLS samples were tested and analyzed,and the baking process was thoroughly investigated.Compared with coated sand prepared by the hot method,the cold method yields a more uniform and complete resin film on the sand's surface,resulting in enhanced tensile strength and accuracy.Additionally,the cold method requires a lower binder content to meet the same strength requirements,thereby minimizing gas evolution,reducing porosity defects,and ultimately improving casting quality.The coated sand samples prepared through the cold method exhibit superior accuracy,with a size error of within±0.4 mm.In contrast,the coated sand samples prepared by the hot method display a lower accuracy,with an average negative error of 2.1993 mm.The highest tensile strength could be attained by controlling the baking temperature within a suitable range(180-190°C),which can effectively reduce the generation of gas,thus contributing to improved overall performance.展开更多
A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block...A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.展开更多
The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructiv...The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles.The results showed that the wax existed in two forms on the surface of the paracetamol particles,forming a porous coating layer:i)whole wax particles on the surface of paracetamol and glued together with other wax surface particles,and ii)deformed wax particles spread on the surface.Regardless of the final particle size fraction(between 100 and 800 mm),the coating thickness had high variability,with average thickness of 5.9±4.2 mm.The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations.The dissolution was slower for larger coated particles.Tableting further reduced the dissolution rate,clearly indicating the impact of subsequent formulation processes on the final quality of the product.展开更多
Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first s...Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first synthesized through chemical coprecipitation with uniform distribution constituents.Electrodeposition was employed to coat pure Ni and Ni-(Ni-Cr)oxides(10,20,30,40,and 50 g/L)on the steel sheets.Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings,and X-ray diffraction analysis was employed to study the chemical composition.The microhardness,thickness,and wear resistance of the coatings were assessed,polarization and electrochemical impedance spectroscopy(EIS)tests were conducted to analyze the corrosion behavior,and the corresponding equivalent circuit was developed.Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10-30 g/L.Agglomerated oxides were detected at high concentrations.Maximum microhardness(HV 661),thickness(116μm),and wear resistance of coatings were found at 30 g/L.A three-loop equivalent circuit corresponded satisfactorily to all EIS data.The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L.The sample of 50 g/L showed the best corrosion resistance.展开更多
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv...The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved.展开更多
In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation....In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.Initially,highly reproducible,cheap and time-effective BHT was produced,which significantly promoted higher osteogenic and angiogenic maturation,while a mild innate immune response was observed.The immense potential of BHT was evidenced by the production of a gap-filling A/G/BHT interphase on Ti implants to mimic the osseous extracellular matrix to achieve functional bridging and exert control over the course of innate immune response.We initially aminosilanized the implant surface using 3-aminopropyl triethoxysilane,and then coated it with 0.25%w/v alginate with 20 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide to allowthe A/G/BHT pre-gel to disperse evenly and covalently attach on the surface.The pre-gel was added with 0.2 M NaCl to homogeneously blend BHT in the structure without inducing ionic crosslinking.Then,the coated implants were freeze-dried and stored.The coated layer demonstrated high cohesive and adhesive strength,and 8-month-long shelf-life at room temperature and normal humidity.The A/G/BHT was able to coat an irregularly shaped Ti implant.Osteoblasts and endothelial cells thrived on the A/G/BHT,and it demonstrated greatly improved osteogenic and angiogenic capacity.Moreover,A/G/BHT maintained macrophage viability and generated an acute increase in immune response that could be resolved rapidly.Finally,A/G/BHT was shown to induce the robust integration of implant in a rabbit femur osteochondral model within 2months.Therefore,we concluded that A/G/BHT coatings could serve as amultifunctional reservoir,promoting the strong and rapid osseointegration of metallic implants.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
This study aimed to investigate the release properties of slow release ure- a coated by industrial lignin and the influences of temperature, pH and post-ripening period on the release of nutrients in coated urea. Acco...This study aimed to investigate the release properties of slow release ure- a coated by industrial lignin and the influences of temperature, pH and post-ripening period on the release of nutrients in coated urea. According to the experimental results, the release of nutrients in coated fertilizers showed an S-shaped curve; on the 28th d, the nutrient release rate reached 73.77%; the differential solubility was 1.83%, and the theoretical release period was 50.25 d. The release of nutrients was significantly influenced by temperature. As the incubation temperature rose from 25 to 40 ℃, preliminary solubility increased from 8.03% to 16.24%; differential solubility increased from 1.83% to 1.88%; theoretical release period was reduced from 51.25 d to 45.55 d. The release of nutrients was promoted by H+ and OH-. After they were placed at room temperature within 30 d, coated fertilizers exhibited the optimal release properties.展开更多
[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment...[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.展开更多
基金This research was supported by the Twinning service plan of the Zhejiang Provincial Team Science and the Science and Technology Develpoment project of Hangzhou(202003A02).
文摘Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.
基金supported by the National Natural Science Foundation of China(11571132,12301542)the Natural Science Foundation of Hubei(2022CFB725)the Natural Science Foundation of Yichang(A23-2-027)。
文摘We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
文摘The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金supported by the National Natural Science Foundation of China(Grant No.22275092)。
文摘The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment.
基金supported by the National Natural Science Foundation of China (Grant Nos.21573109,21206069)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2503900)the National Natural Science Foundation of China(Grant No.52372203)+1 种基金the National Natural Science Foundation of China(Grant No.52202259)the Shandong Province Natural Science Foundation(ZR2022QE093).
文摘High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.
基金Supported by National Natural Science Foundation of China(Grant No.51735003)Research Start-up Fee for Doctoral Personnel of Binzhou University of China(Grant No.2019Y12)Key Program of NSFC-Guangdong Joint Fund of China(Grant No.U1201245).
文摘Owing to the popularization of coating technology, physical Vapor Deposition (PVD) coated tools have become indispensable in the cutting process. Additionally, the post-treatment of coated tools applied to industrial production can efectively enhance the surface quality of coating. To improve the processing performance of coated tools, micro abrasive slurry jet (MASJ) polishing technology is frst applied to the post-treatment of coated tools. Subsequently, the efects of process parameters on the surface quality and cutting thickness of coating are investigated via single-factor experiments. In the experiment, the best surface roughness is obtained by setting the working pressure to 0.4 MPa, particle size to 3 μm, incidence angle to 30°, and abrasive mass concentration to 100 g/L. Based on the results of the single-factor experiments, combination experiments are designed, and three types of coated tools with diferent surface qualities and coating thicknesses are obtained. The MASJ process for the post-treatment of coated tools is investigated based on a tool wear experiment and the efects of cutting parameters on the cutting force and workpiece surface quality of three types of cutting tools. The result indicates that MASJ machining can efectively improve the machining performance of coated tools.
基金Project supported by Beijing Natural Science Foundation(Grant No.2182065)the National Natural Science Foundation of China(Grant No.11922202)。
文摘Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance.
基金This work was financially supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1808216)the Shanxi Provincial Key Research and Development Project(2022ZDYF072).
文摘A cold method was used to prepare coated sand for application in the selective laser sintering(SLS)process.Tensile strength,loss on ignition,gas evolution,and accuracy of the SLS samples were tested and analyzed,and the baking process was thoroughly investigated.Compared with coated sand prepared by the hot method,the cold method yields a more uniform and complete resin film on the sand's surface,resulting in enhanced tensile strength and accuracy.Additionally,the cold method requires a lower binder content to meet the same strength requirements,thereby minimizing gas evolution,reducing porosity defects,and ultimately improving casting quality.The coated sand samples prepared through the cold method exhibit superior accuracy,with a size error of within±0.4 mm.In contrast,the coated sand samples prepared by the hot method display a lower accuracy,with an average negative error of 2.1993 mm.The highest tensile strength could be attained by controlling the baking temperature within a suitable range(180-190°C),which can effectively reduce the generation of gas,thus contributing to improved overall performance.
基金Funded by the Young Top-notch Talent Cultivation Program of Hubei Provincethe National Natural Science Foundation of China(Nos.52071239,51521001)Fundamental Research Funds for the Central Universities(Nos.WUT:2021IVA116 and WUT:2021CG015)。
文摘A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.
基金supported by specific university research(Grant No.:A1_FCHI_2022_006).
文摘The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles.The results showed that the wax existed in two forms on the surface of the paracetamol particles,forming a porous coating layer:i)whole wax particles on the surface of paracetamol and glued together with other wax surface particles,and ii)deformed wax particles spread on the surface.Regardless of the final particle size fraction(between 100 and 800 mm),the coating thickness had high variability,with average thickness of 5.9±4.2 mm.The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations.The dissolution was slower for larger coated particles.Tableting further reduced the dissolution rate,clearly indicating the impact of subsequent formulation processes on the final quality of the product.
文摘Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first synthesized through chemical coprecipitation with uniform distribution constituents.Electrodeposition was employed to coat pure Ni and Ni-(Ni-Cr)oxides(10,20,30,40,and 50 g/L)on the steel sheets.Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings,and X-ray diffraction analysis was employed to study the chemical composition.The microhardness,thickness,and wear resistance of the coatings were assessed,polarization and electrochemical impedance spectroscopy(EIS)tests were conducted to analyze the corrosion behavior,and the corresponding equivalent circuit was developed.Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10-30 g/L.Agglomerated oxides were detected at high concentrations.Maximum microhardness(HV 661),thickness(116μm),and wear resistance of coatings were found at 30 g/L.A three-loop equivalent circuit corresponded satisfactorily to all EIS data.The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L.The sample of 50 g/L showed the best corrosion resistance.
基金Funded by the Key Research Projects in Gansu Province(No.17YF1GA020)。
文摘The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved.
基金Acknowledgements Authors would like to thank Center of Excellence in Biomaterials and Tissue Engineering(BIOMATEN)for the support provided.Authors also acknowledge financial support provided by National Boron Institute(BOREN,Grant No:2018-31-07-25-001).
文摘In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.Initially,highly reproducible,cheap and time-effective BHT was produced,which significantly promoted higher osteogenic and angiogenic maturation,while a mild innate immune response was observed.The immense potential of BHT was evidenced by the production of a gap-filling A/G/BHT interphase on Ti implants to mimic the osseous extracellular matrix to achieve functional bridging and exert control over the course of innate immune response.We initially aminosilanized the implant surface using 3-aminopropyl triethoxysilane,and then coated it with 0.25%w/v alginate with 20 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide to allowthe A/G/BHT pre-gel to disperse evenly and covalently attach on the surface.The pre-gel was added with 0.2 M NaCl to homogeneously blend BHT in the structure without inducing ionic crosslinking.Then,the coated implants were freeze-dried and stored.The coated layer demonstrated high cohesive and adhesive strength,and 8-month-long shelf-life at room temperature and normal humidity.The A/G/BHT was able to coat an irregularly shaped Ti implant.Osteoblasts and endothelial cells thrived on the A/G/BHT,and it demonstrated greatly improved osteogenic and angiogenic capacity.Moreover,A/G/BHT maintained macrophage viability and generated an acute increase in immune response that could be resolved rapidly.Finally,A/G/BHT was shown to induce the robust integration of implant in a rabbit femur osteochondral model within 2months.Therefore,we concluded that A/G/BHT coatings could serve as amultifunctional reservoir,promoting the strong and rapid osseointegration of metallic implants.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Supported by Fund for Transformation of Scientific and Technological Achievements(2011GB24910009)Key Project of National Science&Technology Pillar Program(2011BAC11B01)Science and Technology Cooperation Program of Chinese Academy of Sciences and Hubei Province(YD20111215)~~
文摘This study aimed to investigate the release properties of slow release ure- a coated by industrial lignin and the influences of temperature, pH and post-ripening period on the release of nutrients in coated urea. According to the experimental results, the release of nutrients in coated fertilizers showed an S-shaped curve; on the 28th d, the nutrient release rate reached 73.77%; the differential solubility was 1.83%, and the theoretical release period was 50.25 d. The release of nutrients was significantly influenced by temperature. As the incubation temperature rose from 25 to 40 ℃, preliminary solubility increased from 8.03% to 16.24%; differential solubility increased from 1.83% to 1.88%; theoretical release period was reduced from 51.25 d to 45.55 d. The release of nutrients was promoted by H+ and OH-. After they were placed at room temperature within 30 d, coated fertilizers exhibited the optimal release properties.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment of China(2012ZX07102-003)~~
文摘[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.