The investigation of low cost uncoated andcoated carbide insert in the hard turning of hardened AISID2 steel (≥55 HRC) will definitely open up a new arena asan economical alternative suitable to industrial machinin...The investigation of low cost uncoated andcoated carbide insert in the hard turning of hardened AISID2 steel (≥55 HRC) will definitely open up a new arena asan economical alternative suitable to industrial machiningsectors. Thus, this paper reports the comparative machin-ability assessment for the hard turning of AISI D2 steel((55 ± 1) HRC) by coated and uncoated carbide insert in adry environment. Micro hardness and abrasion tests werecarried out to assess resistance capability against wear. Theabove test results confirmed the greater wear resistanceability of AIaO3 coated carbide insert over uncoated car-bide. Based on the extensive investigation of comparativemachinability, the coated carbide insert (TiN-TiCN-A12O3)outperformed the uncoated carbide insert with regard tosurface roughness, flank wear, chip-tool interface temper-ature, and chip morphology. Abrasion and diffusion wereobserved as the principal tool wear mechanisms in theinvestigated range. The uncoated carbide failed completelydue to the severe chipping and quick dulling of the cuttingedge, which led to its unsuitability for machining hardenedsteel.展开更多
文摘The investigation of low cost uncoated andcoated carbide insert in the hard turning of hardened AISID2 steel (≥55 HRC) will definitely open up a new arena asan economical alternative suitable to industrial machiningsectors. Thus, this paper reports the comparative machin-ability assessment for the hard turning of AISI D2 steel((55 ± 1) HRC) by coated and uncoated carbide insert in adry environment. Micro hardness and abrasion tests werecarried out to assess resistance capability against wear. Theabove test results confirmed the greater wear resistanceability of AIaO3 coated carbide insert over uncoated car-bide. Based on the extensive investigation of comparativemachinability, the coated carbide insert (TiN-TiCN-A12O3)outperformed the uncoated carbide insert with regard tosurface roughness, flank wear, chip-tool interface temper-ature, and chip morphology. Abrasion and diffusion wereobserved as the principal tool wear mechanisms in theinvestigated range. The uncoated carbide failed completelydue to the severe chipping and quick dulling of the cuttingedge, which led to its unsuitability for machining hardenedsteel.