Poly[(mercaptopropyl)methylsiloxane] (PMMS)-based antibacterial polymer coatings have been prepared through a two-step sequential thiol-ene click chemistry utilizing 1-allyl-3-decylimidazolium bromide (ADIm) as ...Poly[(mercaptopropyl)methylsiloxane] (PMMS)-based antibacterial polymer coatings have been prepared through a two-step sequential thiol-ene click chemistry utilizing 1-allyl-3-decylimidazolium bromide (ADIm) as antibacterial monomer and triallyl cyanurate (TAC) as the crosslinker. These films with different content of ADIm were characterized by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and pencil hardness. It was found that the mechanical and thermal properties of these films were largely influenced by the content of ADIm in the films. Films with imidazolium bromide groups displayed excellent antimicrobial activity against Staphylococcus aureus with 100% killing efficiency.展开更多
Novel antibacterial polymer coatings were prepared by a facile thiol-yne click photopolymerization of 1-propargyl-3-allYl-l,3-diazanyl-2,4-cyclopentadiene bromide ([PAIMIBr) and tetra(3-mercapto-pro- pionate)penta...Novel antibacterial polymer coatings were prepared by a facile thiol-yne click photopolymerization of 1-propargyl-3-allYl-l,3-diazanyl-2,4-cyclopentadiene bromide ([PAIMIBr) and tetra(3-mercapto-pro- pionate)pentaerythritol (PETMP) (2:1 molar ratio) using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiator. The antibacterial activity of the coatings was tested against Staphylococcus aureus (ATCC 292130) and Escherichia coli (ATCC 25922) by the dynamic shake method. The evaluation results revealed the antibacterial polymer coatings exhibited excellent inhibitory activity against S. aureus and E. coil, especially for S. aureus.展开更多
文摘Poly[(mercaptopropyl)methylsiloxane] (PMMS)-based antibacterial polymer coatings have been prepared through a two-step sequential thiol-ene click chemistry utilizing 1-allyl-3-decylimidazolium bromide (ADIm) as antibacterial monomer and triallyl cyanurate (TAC) as the crosslinker. These films with different content of ADIm were characterized by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and pencil hardness. It was found that the mechanical and thermal properties of these films were largely influenced by the content of ADIm in the films. Films with imidazolium bromide groups displayed excellent antimicrobial activity against Staphylococcus aureus with 100% killing efficiency.
文摘Novel antibacterial polymer coatings were prepared by a facile thiol-yne click photopolymerization of 1-propargyl-3-allYl-l,3-diazanyl-2,4-cyclopentadiene bromide ([PAIMIBr) and tetra(3-mercapto-pro- pionate)pentaerythritol (PETMP) (2:1 molar ratio) using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiator. The antibacterial activity of the coatings was tested against Staphylococcus aureus (ATCC 292130) and Escherichia coli (ATCC 25922) by the dynamic shake method. The evaluation results revealed the antibacterial polymer coatings exhibited excellent inhibitory activity against S. aureus and E. coil, especially for S. aureus.