Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool. The results of increasing the adhesion strength of thin film coatings on cutting tool ins...Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool. The results of increasing the adhesion strength of thin film coatings on cutting tool inserts by pretreating the inserts with sandblasting technique to obtain a desirable surface morphology of the inserts are presented. A geometric model representing the ideal surface morphology is established to enhance the nucleation density and adhesion strength of coating-substrate. Thin film coating experiment is conducted on the substrates of four different sample groups. Indentation and wear tests are performed on coated inserts to evaluate the effect of sandblasting on the adhesion strength of the coatings. A theoretical analysis is provided on the formation and growth of atom clusters in terms of the contact angle and the thermodynamic barrier of a substrate to predict thin film nucleation.展开更多
Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In ...Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In this study, grit-blasting of an AISI 4130 steel (of different heat treatmen ts) with Al 2O 3 particles was studied. Various grit-blasting parameters such as blasting particle size, the distance between blasting nozzle and the work pi ece (25, 30 and 40 cm.), blasting pressure (3,4,5,6 and 7 bars), blasting time ( 3, 6 and 10 seconds), and the blasting angle (45° and 90°) were examined in or der to find the optimum roughness. The mean roughness (Ra) of the grit-blasted surfaces were measured and the vari ations of the roughness with respect to the above mentioned variables were studi ed. The results show that by increasing blasting time, surface roughness increas es up to a maximum and then slightly decreases it with further duration of t he process. On the other hand a lengthy blasting causes some undesirable results such as an increase in residual particles between surface irregularities. There fore an optimum blasting time is of great importance. Increasing the blasting pr essure also provides a rougher surface, but in grit blasting of harder specimens the surface roughness decreases when the pressure reaches a certain limit. About the blasting angle, it was noticed that an angle of 45° results in less r esidual particles between the surface irregularities, in comparison to the angle of 90°. After grit-blasting, the specimens were plasma spray coated with 80% ZrO 2-20 % Y 2O 3 powder. The adhesive strength of the coating to the substrate was the n measured according to the DIN 50160 standard. The results show that for a certain base metal, the adhesive strength is directl y related to the surface roughness of the base material. Residual particles afte r grit-blasting the surface of the specimens can also have a strong deteriorati ng effect on adhesive strength. Finally, it was shown that the hardness of the b ase material had a direct effect on the adhesive strength of the sprayed coating s.展开更多
The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a resul...The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segre- gate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications.展开更多
The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared betw...The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared between the Al22 Si and ZL102 bimetal.The average bonding strength of bimetal with intermittent oxide film interface was about 89.3MPa,which is higher than that of the bimetal fabricated by zinc coating method(about 76.3MPa).During the process of extrusion,the oxidation film was extruded to crush and the metal was extruded through the micro-cracks of the oxidation film,then the two surfaces were joined together.Altogether,the results showed that extrusion at near-eutectic temperature is favorable for achieving a high-quality metallurgical bonded interface.展开更多
基金This project is Supported by National Science Foundation of China (No.59475090)National Science Foundation of USA (No.DDM-93-9669)
文摘Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool. The results of increasing the adhesion strength of thin film coatings on cutting tool inserts by pretreating the inserts with sandblasting technique to obtain a desirable surface morphology of the inserts are presented. A geometric model representing the ideal surface morphology is established to enhance the nucleation density and adhesion strength of coating-substrate. Thin film coating experiment is conducted on the substrates of four different sample groups. Indentation and wear tests are performed on coated inserts to evaluate the effect of sandblasting on the adhesion strength of the coatings. A theoretical analysis is provided on the formation and growth of atom clusters in terms of the contact angle and the thermodynamic barrier of a substrate to predict thin film nucleation.
文摘Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In this study, grit-blasting of an AISI 4130 steel (of different heat treatmen ts) with Al 2O 3 particles was studied. Various grit-blasting parameters such as blasting particle size, the distance between blasting nozzle and the work pi ece (25, 30 and 40 cm.), blasting pressure (3,4,5,6 and 7 bars), blasting time ( 3, 6 and 10 seconds), and the blasting angle (45° and 90°) were examined in or der to find the optimum roughness. The mean roughness (Ra) of the grit-blasted surfaces were measured and the vari ations of the roughness with respect to the above mentioned variables were studi ed. The results show that by increasing blasting time, surface roughness increas es up to a maximum and then slightly decreases it with further duration of t he process. On the other hand a lengthy blasting causes some undesirable results such as an increase in residual particles between surface irregularities. There fore an optimum blasting time is of great importance. Increasing the blasting pr essure also provides a rougher surface, but in grit blasting of harder specimens the surface roughness decreases when the pressure reaches a certain limit. About the blasting angle, it was noticed that an angle of 45° results in less r esidual particles between the surface irregularities, in comparison to the angle of 90°. After grit-blasting, the specimens were plasma spray coated with 80% ZrO 2-20 % Y 2O 3 powder. The adhesive strength of the coating to the substrate was the n measured according to the DIN 50160 standard. The results show that for a certain base metal, the adhesive strength is directl y related to the surface roughness of the base material. Residual particles afte r grit-blasting the surface of the specimens can also have a strong deteriorati ng effect on adhesive strength. Finally, it was shown that the hardness of the b ase material had a direct effect on the adhesive strength of the sprayed coating s.
基金support by U.S. Department of Energy through DOE EPSCo R Implementation Grant No. DESC0007074by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy under Contract No. DE-AC0205CH11231+2 种基金Subcontract No 7056410 under the Batteries for Advanced Transportation Technologies (BATT) Programfinancial support from the State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, through Grant No. MCMS-0414G01financial support from the National Basic Research of China through Grant No. 2015CB932500.
文摘The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segre- gate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications.
文摘The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared between the Al22 Si and ZL102 bimetal.The average bonding strength of bimetal with intermittent oxide film interface was about 89.3MPa,which is higher than that of the bimetal fabricated by zinc coating method(about 76.3MPa).During the process of extrusion,the oxidation film was extruded to crush and the metal was extruded through the micro-cracks of the oxidation film,then the two surfaces were joined together.Altogether,the results showed that extrusion at near-eutectic temperature is favorable for achieving a high-quality metallurgical bonded interface.