Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filte...Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.展开更多
To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is...To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV.展开更多
Passive intermodulation(PIM)in communication systems is an unwanted interference caused by weak nonlinear currentvoltage characteristics of radio frequency(RF)passive components.Characterization of PIM is important fo...Passive intermodulation(PIM)in communication systems is an unwanted interference caused by weak nonlinear currentvoltage characteristics of radio frequency(RF)passive components.Characterization of PIM is important for both the study of PIM mechanisms and the location/suppression of PIM sources.PIM probes,made of open-ended coaxial transmission lines,have almost the same coupling strength to carriers and PIM products,and are usually used for near-field PIM characterization.Namely,it doesn’t have any filtering capability.Therefore,it cannot stop the carrier power from entering into PIM tester’s receiver,which may trigger active intermodulation of the receiver and degrade the PIM tester’s performance.To overcome this drawback,a passive filtering coaxial probe is proposed here.Compared with existing passive coaxial PIM probes,it has stronger coupling strength for PIM products than for carriers.Thus,the probe itself can block part of the carrier power entering into the PIM tester’s receiver.This advantage helps improve PIM tester’s overall performance.Both theoretical analysis and experiments are conducted for demonstration.The proposed probe brings more possibility to PIM characterization.展开更多
介绍了一种用于个人γ剂量测量的微型硅探测器的信号处理电路的设计,讨论了PCB(印制电路板)设计中应注意的问题。该信号处理电路主要包括前置放大电路、滤波成形电路和极-零相消电路,前置放大电路采用了电荷灵敏前置放大器,滤波成形电...介绍了一种用于个人γ剂量测量的微型硅探测器的信号处理电路的设计,讨论了PCB(印制电路板)设计中应注意的问题。该信号处理电路主要包括前置放大电路、滤波成形电路和极-零相消电路,前置放大电路采用了电荷灵敏前置放大器,滤波成形电路采用了CR-RC滤波成形网络。设计的信号处理电路PCB面积仅有10 cm2,对于0.662 Me V的γ射线,信号处理电路的输出信号的信噪比达到了50:1,输出脉冲幅度达到了1.5 V左右,输出信号之后没有明显的下冲现象,其性能可以满足用于个人剂量测量的要求。展开更多
文摘Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.
基金the National Natural Science Foundation of China(No.11372309,61304017)Youth Innovation Promotion Association(No.2014192)+1 种基金the Provincial Special Funds Project of Science and Technology Cooperation(No.2017SYHZ0024)Key Technology Development Project of Jilin Province(No.20150204074GX).
文摘To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV.
文摘Passive intermodulation(PIM)in communication systems is an unwanted interference caused by weak nonlinear currentvoltage characteristics of radio frequency(RF)passive components.Characterization of PIM is important for both the study of PIM mechanisms and the location/suppression of PIM sources.PIM probes,made of open-ended coaxial transmission lines,have almost the same coupling strength to carriers and PIM products,and are usually used for near-field PIM characterization.Namely,it doesn’t have any filtering capability.Therefore,it cannot stop the carrier power from entering into PIM tester’s receiver,which may trigger active intermodulation of the receiver and degrade the PIM tester’s performance.To overcome this drawback,a passive filtering coaxial probe is proposed here.Compared with existing passive coaxial PIM probes,it has stronger coupling strength for PIM products than for carriers.Thus,the probe itself can block part of the carrier power entering into the PIM tester’s receiver.This advantage helps improve PIM tester’s overall performance.Both theoretical analysis and experiments are conducted for demonstration.The proposed probe brings more possibility to PIM characterization.
文摘介绍了一种用于个人γ剂量测量的微型硅探测器的信号处理电路的设计,讨论了PCB(印制电路板)设计中应注意的问题。该信号处理电路主要包括前置放大电路、滤波成形电路和极-零相消电路,前置放大电路采用了电荷灵敏前置放大器,滤波成形电路采用了CR-RC滤波成形网络。设计的信号处理电路PCB面积仅有10 cm2,对于0.662 Me V的γ射线,信号处理电路的输出信号的信噪比达到了50:1,输出脉冲幅度达到了1.5 V左右,输出信号之后没有明显的下冲现象,其性能可以满足用于个人剂量测量的要求。