The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor duc...The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.展开更多
The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which re...The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio.展开更多
As the elevator and rudder can be used actively for control,in addition to the rotors,Coaxial High-speed Helicopters(CHHs)have the problems of control redundancy and changing control authority in the transition mode.T...As the elevator and rudder can be used actively for control,in addition to the rotors,Coaxial High-speed Helicopters(CHHs)have the problems of control redundancy and changing control authority in the transition mode.This paper presents a robust-augmentation transitioning flight control design for a CHH under the adverse conditions of parametric uncertainties and external disturbances.First,based on control characteristic analysis,an Adaptive Filtered Nonlinear Dynamic Inversion(AFNDI)controller is proposed for the angular rate to handle the effect of unknown unstructured uncertainties and external turbulence.Theoretical analysis proves that the presented angular rate controller can guarantee steady-state and transient performance.Furthermore,the attitude angle and velocity controllers are also added.Then,an Incremental-based Nonlinear Prioritizing Control Allocation(INPCA)method is designed to take into account control surface transition and changing control authority,which efficiently distributes the required moments between coaxial rotors and aero-surfaces,and avoids the control reversal problem of the yaw channel.In the proposed control architecture,the low-pass filter is introduced to alleviate the adverse influence of time delay and measurement noise.Finally,the effectiveness of the proposed controller is demonstrated through nonlinear numerical simulations,and is compared with existing methods.Simulation results show that the proposed control law can improve both capabilities of disturbance rejection and fast response,and works satisfactorily for the CHH transitioning control characteristic.展开更多
Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of th...Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of the two coaxial rotors both become worse because of the aerodynamic interaction between them, and the influence of the top rotor on the bottom rotor is greater than that of the bottom rotor on the top rotor. The downwash velocity at the bottom rotor plane is much larger than that at the top rotor plane, and the downwash velocity at the top rotor plane is a little larger than that at an individual rotor plane. The downwash velocity and thrust coefficient both become larger when the collective angle of blades is added. When the spacing between the two coaxial rotors increases, the thrust coefficient of the top rotor increases, but the total thrust coefficient reduces a little, because the decrease of the bottom rotor thrust coefficient is larger than the increase of the top rotor thrust coefficient.展开更多
The coaxial compound helicopter has two possible strategies for heading control: collective differential and rudder deflection. A flight dynamics model is developed to assess the effect of different heading control st...The coaxial compound helicopter has two possible strategies for heading control: collective differential and rudder deflection. A flight dynamics model is developed to assess the effect of different heading control strategies. This includes the trim characteristics, steady flight performance,controllability, and manoeuvrability. The trim study demonstrates that heading control strategies are less influential on trim results, and the steady flight performance is also not significantly affected by the heading control strategy adopted. The controllability analysis shows although heading bandwidth and phase delay results at various speeds with different heading control strategies are all satisfied, the control derivative of the collective differential decreases as speed increases, and its heading aggressive agility is degraded into Level 3 in high-speed flight. In addition, using collective differential would lead to severe heading-rolling coupling as forward speed increases. On the contrary, the control derivative and aggressive agility of the rudder deflection is improved with forward speed, and there is no evidence of heading-rolling coupling. Finally, the transient turn MissionTask-Element(MTE) is utilized to investigate the heading manoeuvre characteristics in different heading control strategies, which indicates that the collective differential would add the amplitude of control input and the power consumption during this MTE.展开更多
With the development of coaxial rotors and high-speed helicopters, the electromagnetic scattering characteristics of coaxial helicopters have gradually become a research hotspot. In order to deal with the Radar Cross-...With the development of coaxial rotors and high-speed helicopters, the electromagnetic scattering characteristics of coaxial helicopters have gradually become a research hotspot. In order to deal with the Radar Cross-Section(RCS) of high-speed rotating rotors or coaxial main rotors, a Dynamic Scattering Method(DSM) based on dynamic process simulation and grid coordinate transformation is presented. Instantaneous electromagnetic scattering from rotors and helicopters is solved using Physical Optics(PO) and Physical Theory of Diffraction(PTD). Important factors are analyzed and discussed in detail, including individual rotor rotation, azimuth, elevation angle,fuselage, pitch angle, and roll angle. The results show that the electromagnetic scattering characteristics of rotor-type components are dynamic and periodic. The dynamic RCS period of a single rotor is related to the dynamic RCS period of the coaxial main rotor. Choosing different observation angles and attitude angles has a great impact on the static and dynamic RCS of the helicopter.The presented DSM is effective and efficient to analyze and determine the dynamic electromagnetic scattering characteristics of conventional helicopters or coaxial helicopters.展开更多
The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simula...The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simulated by a revised rotor aerodynamics model,where an improved Blade Element Momentum Theory(BEMT)is proposed.Comparisons with the rotor inflow distributions and aircraft trim results from literature validate the accuracy of the model.Then,the influence of the DLCP on the flight dynamics of the aircraft is analysed.The trim characteristics indicate that a negative DLCP can reduce collective and differential collective inputs in low speed forward flight,and the negative longitudinal gradient is alleviated.Moreover,a moderate DLCP can reduce the rotor and total power consumption by 4.68%and 2.9%,respectively.As DLCP further increases,the increased propeller power and unbalanced thrust allocation offset the improvement.In high-speed flight,DLCP does not improve the performance except for extra lateral and heading stick displacements.In addition,the tip clearance is degraded throughout the speed envelope due to the differential pitching moment and the higher thrust from the lower rotor.Meanwhile,the changed rotor efficiency and induced velocity alter low-speed dynamic stability and controllability.The pitch and roll subsidences are slightly degraded with the DLCP,while the heave subsidence,dutch roll and phugoid modes are improved.Lastly,the on-axis controllability,including collective,differential collective pitch,longitudinal and lateral cyclic pitches,varies with DLCP due to its effect on rotor efficiency and inflow distribution.In conclusion,a reasonable DLCP is recommended to adjust the rotor interaction and improve aircraft performance,and further to alter the flight dynamics and aerodynamics of aircraft.展开更多
基金supported by the National Natural Science Foundation of China(Nos.6130422361374116+1 种基金61503185)Specialized Research Fund for the Doctoral Program of Higher Education(20123218120015)
文摘The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.
基金supported by Rotor Aerodynamics Key Laboratory[Grant No.RAL202102-4].
文摘The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio.
文摘As the elevator and rudder can be used actively for control,in addition to the rotors,Coaxial High-speed Helicopters(CHHs)have the problems of control redundancy and changing control authority in the transition mode.This paper presents a robust-augmentation transitioning flight control design for a CHH under the adverse conditions of parametric uncertainties and external disturbances.First,based on control characteristic analysis,an Adaptive Filtered Nonlinear Dynamic Inversion(AFNDI)controller is proposed for the angular rate to handle the effect of unknown unstructured uncertainties and external turbulence.Theoretical analysis proves that the presented angular rate controller can guarantee steady-state and transient performance.Furthermore,the attitude angle and velocity controllers are also added.Then,an Incremental-based Nonlinear Prioritizing Control Allocation(INPCA)method is designed to take into account control surface transition and changing control authority,which efficiently distributes the required moments between coaxial rotors and aero-surfaces,and avoids the control reversal problem of the yaw channel.In the proposed control architecture,the low-pass filter is introduced to alleviate the adverse influence of time delay and measurement noise.Finally,the effectiveness of the proposed controller is demonstrated through nonlinear numerical simulations,and is compared with existing methods.Simulation results show that the proposed control law can improve both capabilities of disturbance rejection and fast response,and works satisfactorily for the CHH transitioning control characteristic.
基金China Postdoctoral Science Foundation (20100481368)National Key Laboratory Foundation of China
文摘Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of the two coaxial rotors both become worse because of the aerodynamic interaction between them, and the influence of the top rotor on the bottom rotor is greater than that of the bottom rotor on the top rotor. The downwash velocity at the bottom rotor plane is much larger than that at the top rotor plane, and the downwash velocity at the top rotor plane is a little larger than that at an individual rotor plane. The downwash velocity and thrust coefficient both become larger when the collective angle of blades is added. When the spacing between the two coaxial rotors increases, the thrust coefficient of the top rotor increases, but the total thrust coefficient reduces a little, because the decrease of the bottom rotor thrust coefficient is larger than the increase of the top rotor thrust coefficient.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China, the program of China Scholarships Council (No. 201706830016)the National Natural Science Foundation of China (No. 11672128)
文摘The coaxial compound helicopter has two possible strategies for heading control: collective differential and rudder deflection. A flight dynamics model is developed to assess the effect of different heading control strategies. This includes the trim characteristics, steady flight performance,controllability, and manoeuvrability. The trim study demonstrates that heading control strategies are less influential on trim results, and the steady flight performance is also not significantly affected by the heading control strategy adopted. The controllability analysis shows although heading bandwidth and phase delay results at various speeds with different heading control strategies are all satisfied, the control derivative of the collective differential decreases as speed increases, and its heading aggressive agility is degraded into Level 3 in high-speed flight. In addition, using collective differential would lead to severe heading-rolling coupling as forward speed increases. On the contrary, the control derivative and aggressive agility of the rudder deflection is improved with forward speed, and there is no evidence of heading-rolling coupling. Finally, the transient turn MissionTask-Element(MTE) is utilized to investigate the heading manoeuvre characteristics in different heading control strategies, which indicates that the collective differential would add the amplitude of control input and the power consumption during this MTE.
基金supported by the project funded by China Postdoctoral Science Foundationthe Excellence Foundation of Beihang University for Ph Dthe National Natural Science Foundation of China (No. 91641123)。
文摘With the development of coaxial rotors and high-speed helicopters, the electromagnetic scattering characteristics of coaxial helicopters have gradually become a research hotspot. In order to deal with the Radar Cross-Section(RCS) of high-speed rotating rotors or coaxial main rotors, a Dynamic Scattering Method(DSM) based on dynamic process simulation and grid coordinate transformation is presented. Instantaneous electromagnetic scattering from rotors and helicopters is solved using Physical Optics(PO) and Physical Theory of Diffraction(PTD). Important factors are analyzed and discussed in detail, including individual rotor rotation, azimuth, elevation angle,fuselage, pitch angle, and roll angle. The results show that the electromagnetic scattering characteristics of rotor-type components are dynamic and periodic. The dynamic RCS period of a single rotor is related to the dynamic RCS period of the coaxial main rotor. Choosing different observation angles and attitude angles has a great impact on the static and dynamic RCS of the helicopter.The presented DSM is effective and efficient to analyze and determine the dynamic electromagnetic scattering characteristics of conventional helicopters or coaxial helicopters.
基金supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simulated by a revised rotor aerodynamics model,where an improved Blade Element Momentum Theory(BEMT)is proposed.Comparisons with the rotor inflow distributions and aircraft trim results from literature validate the accuracy of the model.Then,the influence of the DLCP on the flight dynamics of the aircraft is analysed.The trim characteristics indicate that a negative DLCP can reduce collective and differential collective inputs in low speed forward flight,and the negative longitudinal gradient is alleviated.Moreover,a moderate DLCP can reduce the rotor and total power consumption by 4.68%and 2.9%,respectively.As DLCP further increases,the increased propeller power and unbalanced thrust allocation offset the improvement.In high-speed flight,DLCP does not improve the performance except for extra lateral and heading stick displacements.In addition,the tip clearance is degraded throughout the speed envelope due to the differential pitching moment and the higher thrust from the lower rotor.Meanwhile,the changed rotor efficiency and induced velocity alter low-speed dynamic stability and controllability.The pitch and roll subsidences are slightly degraded with the DLCP,while the heave subsidence,dutch roll and phugoid modes are improved.Lastly,the on-axis controllability,including collective,differential collective pitch,longitudinal and lateral cyclic pitches,varies with DLCP due to its effect on rotor efficiency and inflow distribution.In conclusion,a reasonable DLCP is recommended to adjust the rotor interaction and improve aircraft performance,and further to alter the flight dynamics and aerodynamics of aircraft.