Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially deplete...Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially depleted cobalt resources,leading to a crisis of cobalt resource supply.The paper examines cobalt ore reserves and distribution,and the recent development and consumption of cobalt resources are summarized as well.In addition,the principles,advantages and disadvantages,and research status of various methods are discussed comprehensively.It can be concluded that the use of diverse sources(Cu-Co ores,Ni-Co ores,zinc plant residues,and waste cobalt products)for cobalt production should be enhanced to meet developmental requirements.Furthermore,in recovery technology,the pyro-hydrometallurgical process employs pyrometallurgy as the pretreatment to modify the phase structure of cobalt minerals,enhancing its recovery in the hydrometallurgical stage and facilitating high-purity cobalt production.Consequently,it represents a promising technology for future cobalt recovery.Lastly,based on the above conclusions,the prospects for cobalt are assessed regarding cobalt ore processing and sustainable cobalt recycling,for which further study should be conducted.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi...Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.展开更多
Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overa...Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overall performance of rechargeable batteries heavily depends on their electrode materials.Transition metal tellurides have recently gained significant attention due to their high electrical conductivity and density.Cobalt telluride has received the most extensive research due to its catalytic activity,unique magnetic properties,and diverse composition and crystal structure.Nevertheless,its limited conductivity and significant volume variation contribute to electrode structural deterioration and rapid capacity decline.This review comprehensively summarizes recent advances in rational design and synthesis of modified cobalt telluride-based electrodes,encompassing defect engineering(Te vacancies,cation vacancies,heterointerfaces,and homogeneous interfaces)and composite engineering(derived carbon from precursors,carbon fibers,Mxene,graphene nanosheets,etc.).Particularly,the intricate evolution mechanisms of the conversion reaction process during cycling are elucidated.Furthermore,these modified strategies applied to other transitional metal tellurides,such as iron telluride,nickel telluride,zinc telluride,copper telluride,molybdenum telluride,etc.,are also thoroughly summarized.Additionally,their application extends to emerging aqueous zinc-ion batteries.Finally,potential challenges and prospects are discussed to further propel the development of transition metal tellurides electrode materials for next-generation rechargeable batteries.展开更多
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu...Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs.展开更多
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As...Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.展开更多
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au...Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.展开更多
Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further...Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.展开更多
To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines ...To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-pu...Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance.展开更多
Developing high-efficiency electrocatalysts for hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is required to enhance the sluggish kinetics of water dissociation and optimize the adsorption free e...Developing high-efficiency electrocatalysts for hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is required to enhance the sluggish kinetics of water dissociation and optimize the adsorption free energy of reaction intermediates.Herein,we tackle this challenge by incorporating high-valence Zr into CoP(ZrxCo_(1-x)P),which significantly accelerates the elementary steps of water electrolysis.Theoretical calculations indicate that the appropriate Zr incorporation effectively expedites the sluggish H2O dissociation kinetics and optimizes the adsorption energy of reaction intermediates for boosting the alkaline water electrolysis.These are confirmed by the experimental results of Zr_(0.06)Co_(0.94)P catalyst that delivers exceptional electrochemical activity.The overpotentials at the current density of 10 mA cm^(-2)(j10) are only 62(HER) and 240 mV(OER) in alkaline media.Furthermore,the Zr_(0.06)Co_(0.94)P/CC‖Zr_(0.06)Co_(0.94)P/CC system exhibits superior overall water splitting activity(1.53 V/j10),surpassing most of the reported bifunctional catalysts.This high-valence Zr incorporation and material design methods explore new avenues for realizing high-performance non-noble metal electrocatalysts.展开更多
Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However...Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4].展开更多
Photocatalytic CO_(2)reduction to valuable product exhibit promising prospect for solving the energy crisis and the greenhouse effect.Herein,Co-Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)(Co-TC/CN)composite with enhanced photocatal...Photocatalytic CO_(2)reduction to valuable product exhibit promising prospect for solving the energy crisis and the greenhouse effect.Herein,Co-Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)(Co-TC/CN)composite with enhanced photocatalytic performance for converting CO_(2)to CO and CH_(4)was constructed by electrostatic self-assembly method.The close contact interface between Co-Ti_(3)C_(2)T_(x)and g-C_(3)N_(4)nanosheets can be used as fast transport channels of photogenerated electrons and effectively promote the separation of photogenerated electrons and holes,and the interface between the Co and Ti_(3)C_(2)T_(x)might be the active sites for CO_(2)adsorption and activation.The optimized Co-Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)composite exhibited the highest photocatalytic performance with the CO and CH_(4)production of 55.04 μmol·g^(-1)and 2.29 μmol·g^(-1),respectively,which were 7.5 times and 5.8 times than those of g-C_(3)N_(4).Furthermore,the stability of g-C_(3)N_(4)was improved after coupling with Co-Ti_(3)C_(2)T_(x).展开更多
Cobalt(Co)is a silver-gray,high-intensity,widely distributed metal element that exists in cobalt compounds,and its common valences are bivalence(Co2+)and trivalence(Co3+)[1].The main routes of Co-exposure are occupati...Cobalt(Co)is a silver-gray,high-intensity,widely distributed metal element that exists in cobalt compounds,and its common valences are bivalence(Co2+)and trivalence(Co3+)[1].The main routes of Co-exposure are occupational and environmental exposures.The human body can be exposed to high concentrations of Co2+through inhalation of contaminated air,consumption of contaminated food and water,or ingestion of Co-containing supplements[2].展开更多
Background:The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride(CoCl_(2)).This study w...Background:The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride(CoCl_(2)).This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl_(2)exposure.Methods:Forty-two(42)male rats were grouped as Control;(CoCl_(2);300 ppm);CoCl_(2)+Glycine(50 mg/kg);CoCl_(2)+Glycine(100 mg/kg);Glycine(50 mg/kg);and Glycine(100 mg/kg).The markers of hepatic and renal damage,oxidative stress,the antioxidant defense system,histopathology,and immunohistochemical localization of neutrophil gelatinase associated lipocalin(NGAL)and renal podocin were evaluated.Results:Glycine significantly reduced the markers of oxidative stress(malondialdehyde content and H_(2)O_(2) generation),liver function tests(ALT,AST,and ALP),markers of renal function(creatinine and BUN),and decreased the expression of neutrophil gelatinase-associated lipocalin(NGAL)and podocin compared with rats exposed to CoCl_(2)toxicity without glycine treatment.Histopathology lesions including patchy tubular epithelial necrosis,tubular epithelial degeneration and periglomerular inflammation in renal tissues,and severe portal hepatocellular necrosis,inflammation,and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl_(2)toxicity,but were mild to absent in glycine-treated rats.Conclusion:The results of this study clearly demonstrate protective effects of glycine against CoCl_(2)-induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats.The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.展开更多
Cobalt nanoparticles(NPs)catalysts are extensively used in heterogeneous catalytic reactions,and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst'...Cobalt nanoparticles(NPs)catalysts are extensively used in heterogeneous catalytic reactions,and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst's surface structures and morphologies are sensitive to the addition of promoters.However,the underlying modulation trend remains unclear.Herein,the adsorption of alkali metal promoters(Na and K)on the surfaces of face-centered-cubic(FCC)and hexagonal-closest packed(HCP)polymorphous cobalt was systematically investigated using density functional theory.Furthermore,the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory.For FCC-Co,the exposed area of the(111)facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide.Meanwhile,the(311),(110),and(100)facets would disappear under the higher adsorption coverage of alkali metals.For HCPCo,the Wulff morphology is dominated by the(0001)and(1011)facets and is independent of the alkali metal adsorption coverage.This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.展开更多
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util...Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.展开更多
Milk is one of the very important nutrients of human diet. The presence of toxic elements in milk may threaten the public health. This study reports the levels of Cadmium (Cd), Cobalt (Co) and Lead (Pb) in raw cow’s ...Milk is one of the very important nutrients of human diet. The presence of toxic elements in milk may threaten the public health. This study reports the levels of Cadmium (Cd), Cobalt (Co) and Lead (Pb) in raw cow’s milk collected from different areas of Zanzibar Island during March - May 2016. The samples of raw milk were analyzed by Thermo Scientific-Atomic Absorption Spectrophotometer for quantitative determination of the metals in the matrix. The concentration of Co in this study ranged from ND at Mwanakwerekwe (MK1 and MK2) to a maximum of 0.004 mg/L at Mshelishelini (MS5) and Fuoni (F5) sites with mean concentration of 0.020 ± 0.003 mg/L for all sites. Concentration of Pb ranged between 0.05 - 0.51 mg/L at Fuoni (F7) and Mwanakwerekwe (MK1) respectively, with mean concentration of 0.263 ± 0.031 mg/L for all sites. However, Cd was only detected in one sample collected at Fuoni (F3) with a concentration of 0.001 mg/L. The results revealed that cow’s milk is contaminated with toxic metals, particularly Pb which exceeded the WHO maximum permissible level of 0.02 mg/L. The study furthermore sheds light on possible consequences to public health. It is recommended that, stakeholders especially in Zanzibar such as Zanzibar Food and Drug Authorities (ZFDA) and Zanzibar Bureau of Standards (ZBS) as well as researchers, use the findings of this study for policy making, future study plans, formulation of technical strategies to control milk contamination, risk assessment and develop new alternative methods to measure milk contamination even at a low detection limit for the sake of the consumers’ welfare before posing any serious effects to their health.展开更多
Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been ...Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity.展开更多
基金the financial support of Guangxi Science and Technology Major Project(Guike AA22068078)the Natural Science Foundation of Henan Province(No.222300420548)+2 种基金Henan Province Science and Technology Research and Development plan joint Fund(No.232301420043)the Key Project of the National Key Research and Development Program of China(No.2021YFC2902604)Modern Analysis and Computing Centre in Zhengzhou University。
文摘Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially depleted cobalt resources,leading to a crisis of cobalt resource supply.The paper examines cobalt ore reserves and distribution,and the recent development and consumption of cobalt resources are summarized as well.In addition,the principles,advantages and disadvantages,and research status of various methods are discussed comprehensively.It can be concluded that the use of diverse sources(Cu-Co ores,Ni-Co ores,zinc plant residues,and waste cobalt products)for cobalt production should be enhanced to meet developmental requirements.Furthermore,in recovery technology,the pyro-hydrometallurgical process employs pyrometallurgy as the pretreatment to modify the phase structure of cobalt minerals,enhancing its recovery in the hydrometallurgical stage and facilitating high-purity cobalt production.Consequently,it represents a promising technology for future cobalt recovery.Lastly,based on the above conclusions,the prospects for cobalt are assessed regarding cobalt ore processing and sustainable cobalt recycling,for which further study should be conducted.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金financially supported by the National Natural Science Foundation of China(51572166,52102070)the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(GZ2020012)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the China Postdoctoral Science Foundation(2021M702073)BAJC R&D Fund Projects(BA23011)Australian Research Council Future Fellowships(FT230100436)the Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing(20DZ2294000)。
文摘Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.
基金financially supported by the National Natural Science Foundation of China (Nos.52171202,52177208,52071073)the financial support from CSIRO+3 种基金the Department of Climate Change,Energy,the Environment and Water (DCCEEW)Australian Governmentthe Australian Hydrogen Research Network (AHRN)the Australian Research Council (DE230100327 and LP220200583)the support from the DCCEEW International Clean Innovation Researcher Networks Grant (ICIRN000011)。
文摘Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overall performance of rechargeable batteries heavily depends on their electrode materials.Transition metal tellurides have recently gained significant attention due to their high electrical conductivity and density.Cobalt telluride has received the most extensive research due to its catalytic activity,unique magnetic properties,and diverse composition and crystal structure.Nevertheless,its limited conductivity and significant volume variation contribute to electrode structural deterioration and rapid capacity decline.This review comprehensively summarizes recent advances in rational design and synthesis of modified cobalt telluride-based electrodes,encompassing defect engineering(Te vacancies,cation vacancies,heterointerfaces,and homogeneous interfaces)and composite engineering(derived carbon from precursors,carbon fibers,Mxene,graphene nanosheets,etc.).Particularly,the intricate evolution mechanisms of the conversion reaction process during cycling are elucidated.Furthermore,these modified strategies applied to other transitional metal tellurides,such as iron telluride,nickel telluride,zinc telluride,copper telluride,molybdenum telluride,etc.,are also thoroughly summarized.Additionally,their application extends to emerging aqueous zinc-ion batteries.Finally,potential challenges and prospects are discussed to further propel the development of transition metal tellurides electrode materials for next-generation rechargeable batteries.
基金supported by the National Key Research and Development Program of China(2022YFA1504100)the National Natural Science Foundation of China(22125903,51872283,and 22005298)+4 种基金Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),Chinese Academy of Sciences(CAS),DNL Cooperation Fund,CAS(DNL202016 and DNL202019)Dalian Institute of Chemical Physics(DICP I2020032)Exploratory Research Project of Yanchang Petroleum International Limited and DICP(yc-hw-2022ky-01)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002 and 2021009).
文摘Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs.
基金the financial support from the National Key Research and Development Program of China(No.2017YFB0305500)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.
基金National Natural Science Foundation of China,Grant/Award Numbers:52102260,52171211,51972220,61903235,U22A20145Shandong Provincial Natural Science Foundation,Grant/Award Numbers:ZR2020QB069,ZR2022ME051+4 种基金National Key Research and Development Program of China,Grant/Award Number:2022YFB4002004Scientific and Technological Innovation Ability Improvement Project of Minor Enterprises in Shandong Province,Grant/Award Number:2022TSGC1021Announce the List and Take Charge Project in Jinan,Grant/Award Number:202214012Major innovation project for integrating science,education and industry of Qilu University of Technology (Shandong Academy of Sciences),Grant/Award Numbers:2022JBZ01-07,2022PY044China Postdoctoral Science Foundation,Grant/Award Number:2022M711545。
文摘Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.
基金the China Scholarship Council(CSC)for the financial support(202206230096)D.Yu would like to thank the CSC for the Doctor scholarship(202006360037)+1 种基金J.Dutta would like to acknowledge the partial financial support of VINNOVA project no.2021-02313.PZhang would like to acknowledge partial financial support from the National Natural Science Foundation of China(Nos 52111530187,51972210).
文摘Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.
基金financially supported by the National Natural Science Foundation of China(No.51804084)the Natural Science Foundation of Guangxi Province,China(No.2021GXNSFAA220096)the Science and Technology Major Project of Guangxi Province,China(No.AA17204100)。
文摘To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.21802167,21961132026,92034302,21878331,91645108)the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210903).
文摘Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance.
基金National Natural Science Foundation of China (22202080,51872116, 12034002)the fellowship of China Postdoctoral Science Foundation (2022 M711296)the Jilin Province Science and Technology Development Program (20210301009GX)。
文摘Developing high-efficiency electrocatalysts for hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is required to enhance the sluggish kinetics of water dissociation and optimize the adsorption free energy of reaction intermediates.Herein,we tackle this challenge by incorporating high-valence Zr into CoP(ZrxCo_(1-x)P),which significantly accelerates the elementary steps of water electrolysis.Theoretical calculations indicate that the appropriate Zr incorporation effectively expedites the sluggish H2O dissociation kinetics and optimizes the adsorption energy of reaction intermediates for boosting the alkaline water electrolysis.These are confirmed by the experimental results of Zr_(0.06)Co_(0.94)P catalyst that delivers exceptional electrochemical activity.The overpotentials at the current density of 10 mA cm^(-2)(j10) are only 62(HER) and 240 mV(OER) in alkaline media.Furthermore,the Zr_(0.06)Co_(0.94)P/CC‖Zr_(0.06)Co_(0.94)P/CC system exhibits superior overall water splitting activity(1.53 V/j10),surpassing most of the reported bifunctional catalysts.This high-valence Zr incorporation and material design methods explore new avenues for realizing high-performance non-noble metal electrocatalysts.
基金the support from the National Natural Science Foundation of China(21773146,22171176 and 22102092)the Fok Ying-Tong Education Foundation for Outstanding Young Teachers in University+2 种基金the Research Funds of Shaanxi Normal Universitythe Fundamental Research Funds for the Central Universitiesthe NRF of Korea(NRF-2021R1A3B1076539 and NRF-2020R1I1A1A01074630)。
文摘Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4].
基金the National Natural Science Foundation of China(22208065)Guangxi Natural Science Foundation(2022GXNSFBA035483,2020GXNSFDA297007)+1 种基金Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021K009,2020K002)Special funding for‘Guangxi Bagui Scholars’.
文摘Photocatalytic CO_(2)reduction to valuable product exhibit promising prospect for solving the energy crisis and the greenhouse effect.Herein,Co-Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)(Co-TC/CN)composite with enhanced photocatalytic performance for converting CO_(2)to CO and CH_(4)was constructed by electrostatic self-assembly method.The close contact interface between Co-Ti_(3)C_(2)T_(x)and g-C_(3)N_(4)nanosheets can be used as fast transport channels of photogenerated electrons and effectively promote the separation of photogenerated electrons and holes,and the interface between the Co and Ti_(3)C_(2)T_(x)might be the active sites for CO_(2)adsorption and activation.The optimized Co-Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)composite exhibited the highest photocatalytic performance with the CO and CH_(4)production of 55.04 μmol·g^(-1)and 2.29 μmol·g^(-1),respectively,which were 7.5 times and 5.8 times than those of g-C_(3)N_(4).Furthermore,the stability of g-C_(3)N_(4)was improved after coupling with Co-Ti_(3)C_(2)T_(x).
基金funded by the Grant of the Department of Science and Technology of Jilin Province,grant number[20200201156JC]Jilin Province Health Science and Technology ability advancement project,grant number[2022Jc081].
文摘Cobalt(Co)is a silver-gray,high-intensity,widely distributed metal element that exists in cobalt compounds,and its common valences are bivalence(Co2+)and trivalence(Co3+)[1].The main routes of Co-exposure are occupational and environmental exposures.The human body can be exposed to high concentrations of Co2+through inhalation of contaminated air,consumption of contaminated food and water,or ingestion of Co-containing supplements[2].
文摘Background:The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride(CoCl_(2)).This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl_(2)exposure.Methods:Forty-two(42)male rats were grouped as Control;(CoCl_(2);300 ppm);CoCl_(2)+Glycine(50 mg/kg);CoCl_(2)+Glycine(100 mg/kg);Glycine(50 mg/kg);and Glycine(100 mg/kg).The markers of hepatic and renal damage,oxidative stress,the antioxidant defense system,histopathology,and immunohistochemical localization of neutrophil gelatinase associated lipocalin(NGAL)and renal podocin were evaluated.Results:Glycine significantly reduced the markers of oxidative stress(malondialdehyde content and H_(2)O_(2) generation),liver function tests(ALT,AST,and ALP),markers of renal function(creatinine and BUN),and decreased the expression of neutrophil gelatinase-associated lipocalin(NGAL)and podocin compared with rats exposed to CoCl_(2)toxicity without glycine treatment.Histopathology lesions including patchy tubular epithelial necrosis,tubular epithelial degeneration and periglomerular inflammation in renal tissues,and severe portal hepatocellular necrosis,inflammation,and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl_(2)toxicity,but were mild to absent in glycine-treated rats.Conclusion:The results of this study clearly demonstrate protective effects of glycine against CoCl_(2)-induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats.The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
基金financial support from the National Natural Science Foundation of China (Nos.21972157,21972160,and 22202224)the CAS Project for Young Scientists in Basic Research (No.YSBR-005)+2 种基金the Key Research Program of Frontier Sciences CAS (No.ZDBS-LY-7007)the CAS Project for Internet Security and Information Technology (No.CAS-WX2021SF0110)the funding support from Beijing Advanced Innovation Center for Materials Genome Engineering,Synfuels China,Co.Ltd.and Inner Mongolia University of Technology。
文摘Cobalt nanoparticles(NPs)catalysts are extensively used in heterogeneous catalytic reactions,and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst's surface structures and morphologies are sensitive to the addition of promoters.However,the underlying modulation trend remains unclear.Herein,the adsorption of alkali metal promoters(Na and K)on the surfaces of face-centered-cubic(FCC)and hexagonal-closest packed(HCP)polymorphous cobalt was systematically investigated using density functional theory.Furthermore,the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory.For FCC-Co,the exposed area of the(111)facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide.Meanwhile,the(311),(110),and(100)facets would disappear under the higher adsorption coverage of alkali metals.For HCPCo,the Wulff morphology is dominated by the(0001)and(1011)facets and is independent of the alkali metal adsorption coverage.This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.
基金supported by the National Natural Science Foundation of China(31870570)the Science and Technology Plan of Fujian Provincial,China(2020H4026,2022G02020 and 2022H6002)+1 种基金the Science and Technology Plan of Xiamen(3502Z20203005)the Scientific Research Start-up Funding for Special Professor of Minjiang Scholars。
文摘Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.
文摘Milk is one of the very important nutrients of human diet. The presence of toxic elements in milk may threaten the public health. This study reports the levels of Cadmium (Cd), Cobalt (Co) and Lead (Pb) in raw cow’s milk collected from different areas of Zanzibar Island during March - May 2016. The samples of raw milk were analyzed by Thermo Scientific-Atomic Absorption Spectrophotometer for quantitative determination of the metals in the matrix. The concentration of Co in this study ranged from ND at Mwanakwerekwe (MK1 and MK2) to a maximum of 0.004 mg/L at Mshelishelini (MS5) and Fuoni (F5) sites with mean concentration of 0.020 ± 0.003 mg/L for all sites. Concentration of Pb ranged between 0.05 - 0.51 mg/L at Fuoni (F7) and Mwanakwerekwe (MK1) respectively, with mean concentration of 0.263 ± 0.031 mg/L for all sites. However, Cd was only detected in one sample collected at Fuoni (F3) with a concentration of 0.001 mg/L. The results revealed that cow’s milk is contaminated with toxic metals, particularly Pb which exceeded the WHO maximum permissible level of 0.02 mg/L. The study furthermore sheds light on possible consequences to public health. It is recommended that, stakeholders especially in Zanzibar such as Zanzibar Food and Drug Authorities (ZFDA) and Zanzibar Bureau of Standards (ZBS) as well as researchers, use the findings of this study for policy making, future study plans, formulation of technical strategies to control milk contamination, risk assessment and develop new alternative methods to measure milk contamination even at a low detection limit for the sake of the consumers’ welfare before posing any serious effects to their health.
基金the financial support from the National Natural Science Foundation of China(22005099)。
文摘Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity.