Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
Two novel L-amino alcohol coordination cobalt and copper complexes I and Ⅱ were obtained separately from the direct reaction of L-plenylglycinol with Co(Ⅱ) acetate tetrahydrate in anhydrous ethanol and L-leucinol ...Two novel L-amino alcohol coordination cobalt and copper complexes I and Ⅱ were obtained separately from the direct reaction of L-plenylglycinol with Co(Ⅱ) acetate tetrahydrate in anhydrous ethanol and L-leucinol with Cu(Ⅱ) chloride dihydrate in anhydrous methanol. The structures of I and Ⅱ were determined by single-crystal X-ray diffraction and further characterized by elemental analysis and IR. For I: [Co3(C51H66N3O16)]2(OAc), monoclinic, space group P21, a = 15.022(3), b = 14.242(3), c = 28.922(6) A, β = 98.944(4)°, V = 6112(2) A3, Z = 4, Dc = 1.339 g/cm^3, the final R = 0.0860 for 21906 observed reflections with I 〉 2(I). For Ⅱ: Cu2[C24H58N4O7Cl]Cl, orthorhombic, space group P212121, a = 6.1861(13), b = 20.838(4), c = 28.274(6) , V = 3644.6(13) 3, Z = 4, Dc = 1.310 g/cm^3, the final R = 0.0642 for 11106 observed reflections with I 〉 2(I). The complexes were then used to catalyze the Henry reaction and catalytic activity determined by 1H NMR.展开更多
A new Schiff base (LK) obtained from 2, 4, -dihydroxybenzaldehyde and glycly-DL- phenylalanine reacted with Cu(II), Zn(II), Ni(II) and Co(II) to yield new complexes. The complexes were characterized by elemental an...A new Schiff base (LK) obtained from 2, 4, -dihydroxybenzaldehyde and glycly-DL- phenylalanine reacted with Cu(II), Zn(II), Ni(II) and Co(II) to yield new complexes. The complexes were characterized by elemental analyses, molar conductance, 1H NMR DTA, TG, IR and UV spectroscopy. In these complexes the ligand is coordinated to the metal through its phenolic oxygen, carboxyl oxygen, imino nitrogen and amide nitrogen. All complexes are non-electrolytes and four coordinated with 1:1(metal; ligand) stoichiometry. The probable structure of the complexes is suggested展开更多
Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated ...Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.展开更多
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
Aim To study the effects of binuclear copper (Ⅱ) threonine complex (Cu2 (Thr)4) as analogue of superoxide dismutase (SOD) on blood glucose, blood lipids and vessels of hearts and kidneys in diabetic mice. Met...Aim To study the effects of binuclear copper (Ⅱ) threonine complex (Cu2 (Thr)4) as analogue of superoxide dismutase (SOD) on blood glucose, blood lipids and vessels of hearts and kidneys in diabetic mice. Methods Diabetic mouse model was established by intraperitioneal injection of alloxan. Low, middle, and high doses of Cu2(Thr)4 at 0.002%, 0.02% and 0.1% were given respectively to diabetic mice following lavage. The fasting blood glucose was determined after the diabetic mice were given Cu2 (Thr)4 for 0, 30, and 45 d. The diabetic mice were killed on the 45th day. Then glycosylated hemoglobin (HbAlc) and blood lipids were assayed, and pathologic changes in hearts and kidneys stained with HE were observed. Results Compared with the control group in which the diabetic mice were given distilled water, the value of blood glucose reduced significantly in middle dose group (P 〈 0.01 ), followed by that in low dose group (P 〈 0.05). TC level reduced markedly and HDL level increased significantly in all three treatment groups (P 〈 0.05). Especially in middle dose group, cardiac muscle fibers were neatly arranged, nucleus and cytoplasm well distributed, glomeruli showing normal structure, cells well distributed and staining being normal. Conclusion Cu2 (Thr)4 reduces blood glucose, regulates blood lipids, and play protective action on the vessels of hearts and kidneys in diabetic mice. The effects of it in middle dose were better than those of other doses.展开更多
A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvi...A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.展开更多
The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to sp...The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS) regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 550-750-nm range for 21 different mixtures of cobalt, copper and nickel. Calibration matrices were formed from samples containing 0.05-1.05, 0.05-1.30 and 0.05-0.80 μg·mL^-1 for cobalt, copper and nickel, respectively. The root mean square error of prediction (RMSEP) for cobalt, copper and nickel with OSC and without OSC were 0.007, 0.008, 0.011 and 0.031,0.037, 0.032 μg· mL^-1, respectively. This procedure allows the simultaneous determination of cobalt, copper and nickel in synthetic and real samples and good reliability of the determination was proved.展开更多
Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex...Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones.展开更多
A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia....A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.展开更多
The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain...The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain C_1–C_6mixed alcohols production over cobalt–copper based catalysts. A number of catalyst formulations were screened for their suitability at that time. In particular, the addition of Cr, Zn, Al, Mn and V to Co Cu was investigated. In a number of patents, it was shown that catalyst preparation is crucial in these catalyst formulations and that high alcohols selectivity can only be achieved by carefully respecting the procedures and recipes. This short critical review highlights recent developments in Co Cu-based catalysts for higher terminal alcohols synthesis via F–T synthesis. Special attention will be given to catalyst preparation which according to developments in our group is based on oxalate precipitation. This way we show that the close association of Co and Cu on the one hand and promoter/dispersant on the other are of utmost importance to ensure high performance of the catalysts. We shall concentrate on 'Co Cu Mn','Co Cu Mo' and 'Co Cu Nb' catalyst formulations, all prepared via oxalate precipitation and combined with'entrainment techniques' if necessary, and show high total alcohols selectivity can be obtained with tunable Anderson-Schulz-Flory chain-lengthening probability. Either long-chain C_8–C_(14)terminal alcohols as feedstock for plasticizers, lubricants and detergents, or short-chain C_2–C_5alcohols as 'alkanol' fuels or fuel additives can be formed this way.展开更多
One novel binuclear copper(Ⅱ) complex [Cu 2 (Hpt) 2 (CO 3) 2 (H 2 O) 2 ]·H 2 O with copper carbonate and 3-(pyridin-2-yl)-1,2,4-triazole (Hpt) was hydrothermally synthesized and characterized by IR a...One novel binuclear copper(Ⅱ) complex [Cu 2 (Hpt) 2 (CO 3) 2 (H 2 O) 2 ]·H 2 O with copper carbonate and 3-(pyridin-2-yl)-1,2,4-triazole (Hpt) was hydrothermally synthesized and characterized by IR and X-ray diffraction analysis.The complex crystallizes in triclinic,space group P2 1 /n with a=0.6862(1),b=0.7805(1),c=1.1983(2) nm,α=72.03(2),β=107.72(3),γ=75.28(2)o,V=0.5884 nm 3,D c=2.105 g/cm 3,Z=1,F(000)=357,GOOF=1.041,the final R=0.01859 and wR=0.04348.The whole molecule is composed of two cooper ions,two Hpt molecules,two carbonate and three water molecules,forming a binuclear structure.The crystal structure shows that the cooper ion is coordinated with three nitrogen atoms from two Hpt molecules,two oxygen atoms from one carbonic acid and one water molecule,forming a distorted square pyramidal geometry.The TG analysis result shows that the title complex is stable under 131.0 ℃.展开更多
The title complex [Cu2(bipy)2(Hpht)2Cl](Hpht) (bipy = 2,2?-bipyridine, H2pht = o-phthalic acid) has been synthesized in the NaOH aqueous solution of CuCl2, Gd(NO3)3, bipy and H2pht, and its crystal structure was det...The title complex [Cu2(bipy)2(Hpht)2Cl](Hpht) (bipy = 2,2?-bipyridine, H2pht = o-phthalic acid) has been synthesized in the NaOH aqueous solution of CuCl2, Gd(NO3)3, bipy and H2pht, and its crystal structure was determined by single-crystal X-ray diffraction method. It crys- tallizes in triclinic, space group P1, C44H31ClCu2N4O12, Mr = 970.26, a = 8.175(2), b = 16.254(4), c = 16.946(4) ?, α = 62.966(6), β = 84.833(8), γ = 84.348(8)°, V = 1993.4(8) ?3, Z = 2, Dc = 1.616 g/cm3, F(000) = 988 and μ = 1.207 mm-1. The final R = 0.0429 and wR = 0.0843 for 5682 observed reflections with I > 2σ(I). Each copper(II) atom displays a distorted square-pyramidal geometry with two nitrogen atoms of one chelate 2,2?-bipy molecule, two oxygen atoms from two different bridging carboxylate groups of Hpht- and one bridging chloride atom occupying the apical position. The two copper(II) atoms are connected by a μ2-Cl atom and two bridging Hpht- ligands in a syn-syn coordination mode to form an isolated dinuclear unit. The molecular structure is extended to a one-dimensional wavy chain through hydrogen bonds. The title complex exhibits blue fluorescent emission at 443 nm (λex = 372 nm) in the solid state at room temperature.展开更多
Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel an...Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.展开更多
Effect of added Co2 +(aq)on copper electrowinning was studied using doped polyaniline(Pani)and Pb-Ag(1%)anodes and a stainless steel cathode.The presence of added Co2+ (aq)in the electrolyte solution was found to decr...Effect of added Co2 +(aq)on copper electrowinning was studied using doped polyaniline(Pani)and Pb-Ag(1%)anodes and a stainless steel cathode.The presence of added Co2+ (aq)in the electrolyte solution was found to decrease the anode potentials.The optimum level of Co2 +(aq)concentration in the electrolyte,with respect to the maximum saving of power consumption was established.Linear sweep voltammetry(LSV)was used to study the influence of added Co2 +(aq)on the anodic processes in a copper sulfate-sulfuric acid electrolyte.The oxygen-evolution potential for Pani anode is depolarised at lower current densities(≤0.01 A/cm2)and attains saturation atρ(Co 2+ )o≈0.789 g/L;whilst the oxygen-evolution potential for Pb-Ag(1%)anode is depolarised at higher current densities(≤0.02 A/cm2)and attains saturation atρ(Co 2+ )o≈1.315 g/L.The preferred orientations of the copper deposits change from(220)to(111)with the addition of 0.394?0.789 g/L Co 2+ but higher concentrations favor(220)orientation again.展开更多
The title complex [Cu(4,4?bpy)(H2O)3]SO42H2O (Mr = 405.86) was synthesized under hydrothermal conditions and its crystal structure has been determined by X-ray diffraction. It crystallizes in the hexagonal system, spa...The title complex [Cu(4,4?bpy)(H2O)3]SO42H2O (Mr = 405.86) was synthesized under hydrothermal conditions and its crystal structure has been determined by X-ray diffraction. It crystallizes in the hexagonal system, space group P61 with a = 11.1870(4), c = 21.578(1) ? V = 2338.6(2) ?, Dc = 1.729 g/cm3, Z = 6, m(MoKa) = 1.583 mm-1 and F(000) = 1254. The final R and wR are 0.0253 and 0.0416 for 1458 observed reflections with I≥2s(I), respectively. It was revealed that the square pyramidal Cu(II) sites are linked through 4,4?bipyridine groups, forming infinite one-dimensional chains, with the sulfate anions and lattice water molecules occupying the inter-chain positions. During the electrostatic interactions, there exist O…O hydrogen bonds and p-p stacking interactions between the parallel aromatic bipy rings in the structure.展开更多
A new Cu(Ⅱ) complex [Cu(4-cba)(1,10-phen)(H2O)2](NO3) (4-Hcba = 4-cyanobenzoic acid) has been synthesized by solvothermal reaction in an ethanol/water mixed solution at 100 ℃ and structurally characteriz...A new Cu(Ⅱ) complex [Cu(4-cba)(1,10-phen)(H2O)2](NO3) (4-Hcba = 4-cyanobenzoic acid) has been synthesized by solvothermal reaction in an ethanol/water mixed solution at 100 ℃ and structurally characterized by single-crystal X-ray diffraction. Crystallographic data: C20H16CuN4O7, Mr= 487.91, triclinic, space group PI, a = 7.8420(2), b = 9.1070(2), c = 15.1140(6) A, a = 76.889(9), β = 81.332(11), γ = 74.844( 11)°, V = 1009.89(5) A^3, Z = 2, Dc = 1.605 g/cm^3, F(000) = 498, μ = 1.134 mm^-1, the final R = 0.0379 and wR = 0.0865 for 2977 observed reflections with 1 〉 2σ(Ⅰ). The Cu(Ⅱ) atom is coordinated by two terminal water molecules, one chelating 1,10-phen molecule and one monodentate 4-cba ligand to form a slightly distorted square pyramid. The title complex molecules are connected through hydrogen bonds and π-π stacking interactions to generate a 2D layered network. The thermogravimetric analysis of the title complex has also been discussed.展开更多
The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfura...The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst.展开更多
A copper-bispyridylpyrrolide complex [Cu(PDPH)Cl](PDPH = 2,5-bis(2′-pyridyl)pyrrole) was synthesized and characterized. The complex crystallizes in the orthorhombic system with space group Pccn, a = 0.9016(3) nm, b =...A copper-bispyridylpyrrolide complex [Cu(PDPH)Cl](PDPH = 2,5-bis(2′-pyridyl)pyrrole) was synthesized and characterized. The complex crystallizes in the orthorhombic system with space group Pccn, a = 0.9016(3) nm, b = 1.0931(4) nm, c =2.5319(8) nm, and V = 2.4951(15) nm3. The copper center is situated in a square planar geometry. The interaction of the copper(II)complex with calf thymus DNA(CT-DNA) was investigated by electronic absorption, circular dichroism(CD) and fluorescence spectra. It is proposed that the complex binds to CT-DNA through groove binding mode. Nuclease activity of the complex was also studied by gel electrophoresis method. The complex can efficiently cleave supercoiled p BR322 DNA in the presence of ascorbate(H2A) via oxidative pathway. The preliminary mechanism of DNA cleavage by the complex with different inhibiting reagents indicates that the hydroxyl radicals were involved as the active species in the DNA cleavage process.展开更多
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
文摘Two novel L-amino alcohol coordination cobalt and copper complexes I and Ⅱ were obtained separately from the direct reaction of L-plenylglycinol with Co(Ⅱ) acetate tetrahydrate in anhydrous ethanol and L-leucinol with Cu(Ⅱ) chloride dihydrate in anhydrous methanol. The structures of I and Ⅱ were determined by single-crystal X-ray diffraction and further characterized by elemental analysis and IR. For I: [Co3(C51H66N3O16)]2(OAc), monoclinic, space group P21, a = 15.022(3), b = 14.242(3), c = 28.922(6) A, β = 98.944(4)°, V = 6112(2) A3, Z = 4, Dc = 1.339 g/cm^3, the final R = 0.0860 for 21906 observed reflections with I 〉 2(I). For Ⅱ: Cu2[C24H58N4O7Cl]Cl, orthorhombic, space group P212121, a = 6.1861(13), b = 20.838(4), c = 28.274(6) , V = 3644.6(13) 3, Z = 4, Dc = 1.310 g/cm^3, the final R = 0.0642 for 11106 observed reflections with I 〉 2(I). The complexes were then used to catalyze the Henry reaction and catalytic activity determined by 1H NMR.
文摘A new Schiff base (LK) obtained from 2, 4, -dihydroxybenzaldehyde and glycly-DL- phenylalanine reacted with Cu(II), Zn(II), Ni(II) and Co(II) to yield new complexes. The complexes were characterized by elemental analyses, molar conductance, 1H NMR DTA, TG, IR and UV spectroscopy. In these complexes the ligand is coordinated to the metal through its phenolic oxygen, carboxyl oxygen, imino nitrogen and amide nitrogen. All complexes are non-electrolytes and four coordinated with 1:1(metal; ligand) stoichiometry. The probable structure of the complexes is suggested
基金Project (2012zzts026) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (201205020) supported by Scientific Research Program of Marine Public Welfare Industry of China+2 种基金Project (51074195) supported by the National Natural Science Foundation of ChinaProject (CX2012B123) supported by Research Innovation for Graduate Student of Hunan Province,ChinaProject (12C517) supported by Education Department of Hunan Province,China
文摘Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
文摘Aim To study the effects of binuclear copper (Ⅱ) threonine complex (Cu2 (Thr)4) as analogue of superoxide dismutase (SOD) on blood glucose, blood lipids and vessels of hearts and kidneys in diabetic mice. Methods Diabetic mouse model was established by intraperitioneal injection of alloxan. Low, middle, and high doses of Cu2(Thr)4 at 0.002%, 0.02% and 0.1% were given respectively to diabetic mice following lavage. The fasting blood glucose was determined after the diabetic mice were given Cu2 (Thr)4 for 0, 30, and 45 d. The diabetic mice were killed on the 45th day. Then glycosylated hemoglobin (HbAlc) and blood lipids were assayed, and pathologic changes in hearts and kidneys stained with HE were observed. Results Compared with the control group in which the diabetic mice were given distilled water, the value of blood glucose reduced significantly in middle dose group (P 〈 0.01 ), followed by that in low dose group (P 〈 0.05). TC level reduced markedly and HDL level increased significantly in all three treatment groups (P 〈 0.05). Especially in middle dose group, cardiac muscle fibers were neatly arranged, nucleus and cytoplasm well distributed, glomeruli showing normal structure, cells well distributed and staining being normal. Conclusion Cu2 (Thr)4 reduces blood glucose, regulates blood lipids, and play protective action on the vessels of hearts and kidneys in diabetic mice. The effects of it in middle dose were better than those of other doses.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject(2014LY36)supported by the Science and Technology Project of Longyan CityChina
文摘A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.
文摘The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS) regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 550-750-nm range for 21 different mixtures of cobalt, copper and nickel. Calibration matrices were formed from samples containing 0.05-1.05, 0.05-1.30 and 0.05-0.80 μg·mL^-1 for cobalt, copper and nickel, respectively. The root mean square error of prediction (RMSEP) for cobalt, copper and nickel with OSC and without OSC were 0.007, 0.008, 0.011 and 0.031,0.037, 0.032 μg· mL^-1, respectively. This procedure allows the simultaneous determination of cobalt, copper and nickel in synthetic and real samples and good reliability of the determination was proved.
文摘Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones.
文摘A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.
基金supported by the National Science Foundation under contract No.CBET-1438227
文摘The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain C_1–C_6mixed alcohols production over cobalt–copper based catalysts. A number of catalyst formulations were screened for their suitability at that time. In particular, the addition of Cr, Zn, Al, Mn and V to Co Cu was investigated. In a number of patents, it was shown that catalyst preparation is crucial in these catalyst formulations and that high alcohols selectivity can only be achieved by carefully respecting the procedures and recipes. This short critical review highlights recent developments in Co Cu-based catalysts for higher terminal alcohols synthesis via F–T synthesis. Special attention will be given to catalyst preparation which according to developments in our group is based on oxalate precipitation. This way we show that the close association of Co and Cu on the one hand and promoter/dispersant on the other are of utmost importance to ensure high performance of the catalysts. We shall concentrate on 'Co Cu Mn','Co Cu Mo' and 'Co Cu Nb' catalyst formulations, all prepared via oxalate precipitation and combined with'entrainment techniques' if necessary, and show high total alcohols selectivity can be obtained with tunable Anderson-Schulz-Flory chain-lengthening probability. Either long-chain C_8–C_(14)terminal alcohols as feedstock for plasticizers, lubricants and detergents, or short-chain C_2–C_5alcohols as 'alkanol' fuels or fuel additives can be formed this way.
基金Supported by the Hunan Provincial Department of Science and Technology Project (2009FJ3101)
文摘One novel binuclear copper(Ⅱ) complex [Cu 2 (Hpt) 2 (CO 3) 2 (H 2 O) 2 ]·H 2 O with copper carbonate and 3-(pyridin-2-yl)-1,2,4-triazole (Hpt) was hydrothermally synthesized and characterized by IR and X-ray diffraction analysis.The complex crystallizes in triclinic,space group P2 1 /n with a=0.6862(1),b=0.7805(1),c=1.1983(2) nm,α=72.03(2),β=107.72(3),γ=75.28(2)o,V=0.5884 nm 3,D c=2.105 g/cm 3,Z=1,F(000)=357,GOOF=1.041,the final R=0.01859 and wR=0.04348.The whole molecule is composed of two cooper ions,two Hpt molecules,two carbonate and three water molecules,forming a binuclear structure.The crystal structure shows that the cooper ion is coordinated with three nitrogen atoms from two Hpt molecules,two oxygen atoms from one carbonic acid and one water molecule,forming a distorted square pyramidal geometry.The TG analysis result shows that the title complex is stable under 131.0 ℃.
基金This work was supported by the National Natural Science Foundation of China (20001007 20131020)+1 种基金and Natural Science Foundation of Fujian Province (2003I031 A0420002)
文摘The title complex [Cu2(bipy)2(Hpht)2Cl](Hpht) (bipy = 2,2?-bipyridine, H2pht = o-phthalic acid) has been synthesized in the NaOH aqueous solution of CuCl2, Gd(NO3)3, bipy and H2pht, and its crystal structure was determined by single-crystal X-ray diffraction method. It crys- tallizes in triclinic, space group P1, C44H31ClCu2N4O12, Mr = 970.26, a = 8.175(2), b = 16.254(4), c = 16.946(4) ?, α = 62.966(6), β = 84.833(8), γ = 84.348(8)°, V = 1993.4(8) ?3, Z = 2, Dc = 1.616 g/cm3, F(000) = 988 and μ = 1.207 mm-1. The final R = 0.0429 and wR = 0.0843 for 5682 observed reflections with I > 2σ(I). Each copper(II) atom displays a distorted square-pyramidal geometry with two nitrogen atoms of one chelate 2,2?-bipy molecule, two oxygen atoms from two different bridging carboxylate groups of Hpht- and one bridging chloride atom occupying the apical position. The two copper(II) atoms are connected by a μ2-Cl atom and two bridging Hpht- ligands in a syn-syn coordination mode to form an isolated dinuclear unit. The molecular structure is extended to a one-dimensional wavy chain through hydrogen bonds. The title complex exhibits blue fluorescent emission at 443 nm (λex = 372 nm) in the solid state at room temperature.
文摘Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.
基金Project(50974065)supported by the National Natural Science Foundation of ChinaProject(2009009)supported by the Analysis and Testing Foundation of Kunming University of Science and Technology,China
文摘Effect of added Co2 +(aq)on copper electrowinning was studied using doped polyaniline(Pani)and Pb-Ag(1%)anodes and a stainless steel cathode.The presence of added Co2+ (aq)in the electrolyte solution was found to decrease the anode potentials.The optimum level of Co2 +(aq)concentration in the electrolyte,with respect to the maximum saving of power consumption was established.Linear sweep voltammetry(LSV)was used to study the influence of added Co2 +(aq)on the anodic processes in a copper sulfate-sulfuric acid electrolyte.The oxygen-evolution potential for Pani anode is depolarised at lower current densities(≤0.01 A/cm2)and attains saturation atρ(Co 2+ )o≈0.789 g/L;whilst the oxygen-evolution potential for Pb-Ag(1%)anode is depolarised at higher current densities(≤0.02 A/cm2)and attains saturation atρ(Co 2+ )o≈1.315 g/L.The preferred orientations of the copper deposits change from(220)to(111)with the addition of 0.394?0.789 g/L Co 2+ but higher concentrations favor(220)orientation again.
基金This work was financially supported by the Natural Science Foundation of Fujian province
文摘The title complex [Cu(4,4?bpy)(H2O)3]SO42H2O (Mr = 405.86) was synthesized under hydrothermal conditions and its crystal structure has been determined by X-ray diffraction. It crystallizes in the hexagonal system, space group P61 with a = 11.1870(4), c = 21.578(1) ? V = 2338.6(2) ?, Dc = 1.729 g/cm3, Z = 6, m(MoKa) = 1.583 mm-1 and F(000) = 1254. The final R and wR are 0.0253 and 0.0416 for 1458 observed reflections with I≥2s(I), respectively. It was revealed that the square pyramidal Cu(II) sites are linked through 4,4?bipyridine groups, forming infinite one-dimensional chains, with the sulfate anions and lattice water molecules occupying the inter-chain positions. During the electrostatic interactions, there exist O…O hydrogen bonds and p-p stacking interactions between the parallel aromatic bipy rings in the structure.
基金This work was supported by the NSF for Distinguished Young Scientist of China (20425104) and the NSF of Fujian Province (A0420002, 2005I017)
文摘A new Cu(Ⅱ) complex [Cu(4-cba)(1,10-phen)(H2O)2](NO3) (4-Hcba = 4-cyanobenzoic acid) has been synthesized by solvothermal reaction in an ethanol/water mixed solution at 100 ℃ and structurally characterized by single-crystal X-ray diffraction. Crystallographic data: C20H16CuN4O7, Mr= 487.91, triclinic, space group PI, a = 7.8420(2), b = 9.1070(2), c = 15.1140(6) A, a = 76.889(9), β = 81.332(11), γ = 74.844( 11)°, V = 1009.89(5) A^3, Z = 2, Dc = 1.605 g/cm^3, F(000) = 498, μ = 1.134 mm^-1, the final R = 0.0379 and wR = 0.0865 for 2977 observed reflections with 1 〉 2σ(Ⅰ). The Cu(Ⅱ) atom is coordinated by two terminal water molecules, one chelating 1,10-phen molecule and one monodentate 4-cba ligand to form a slightly distorted square pyramid. The title complex molecules are connected through hydrogen bonds and π-π stacking interactions to generate a 2D layered network. The thermogravimetric analysis of the title complex has also been discussed.
文摘The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst.
基金Project(21001118)supported by National Natural Science Foundation of ChinaProject(12JJ3016)supported by Natural Science Foundation of Hunan Province,China
文摘A copper-bispyridylpyrrolide complex [Cu(PDPH)Cl](PDPH = 2,5-bis(2′-pyridyl)pyrrole) was synthesized and characterized. The complex crystallizes in the orthorhombic system with space group Pccn, a = 0.9016(3) nm, b = 1.0931(4) nm, c =2.5319(8) nm, and V = 2.4951(15) nm3. The copper center is situated in a square planar geometry. The interaction of the copper(II)complex with calf thymus DNA(CT-DNA) was investigated by electronic absorption, circular dichroism(CD) and fluorescence spectra. It is proposed that the complex binds to CT-DNA through groove binding mode. Nuclease activity of the complex was also studied by gel electrophoresis method. The complex can efficiently cleave supercoiled p BR322 DNA in the presence of ascorbate(H2A) via oxidative pathway. The preliminary mechanism of DNA cleavage by the complex with different inhibiting reagents indicates that the hydroxyl radicals were involved as the active species in the DNA cleavage process.