期刊文献+
共找到6,099篇文章
< 1 2 250 >
每页显示 20 50 100
MECHANISM OF SECONDARY M_(23)C_6 PRECIPITATION AROUND MC IN A COBALT-BASE SUPERALLOY 被引量:6
1
作者 W.H. Jiang X.D. Yao H.R. Guan and Z.Q. Hu(1) Department of Superalloys, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110015, China2) Department of Metal Materials Engineering, Shenyang Polytechnic University) Shenyang 110023, Chi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第2期155-159,共5页
Secondary M23C6 precipitation around primary MC carbide in a directionally solidified cobalt-base saperalloy was investigated duriny aging at 850℃. The results show that it was closely related to the decomposition of... Secondary M23C6 precipitation around primary MC carbide in a directionally solidified cobalt-base saperalloy was investigated duriny aging at 850℃. The results show that it was closely related to the decomposition of the MC. Two mechanisms were suggested,i.e. the in situ reaction, MC+γ→M23C6+C, and the direct reaction, M+C→M23C6,in which MC acted as a carbon source. 展开更多
关键词 cobalt-base superalloy secondary precipitation carbide aging
下载PDF
EFFECT OF REVERT RECYCLE TIMES ON MICROSTRUCTURE AND FATIGUE PROPERTIES IN COBALT-BASE SUPERALLOY K640S 被引量:6
2
作者 T.L. Wang 1,2) , J.T. Guo 1) , D.S. Xia 2) , Y.Wang 1) and H.C. Yang 2) 1) Institute of Metal Research, Chinese Academy of Science, Shenyang 110015,China 2) Material and Metallurgical Institute Northeastern University, Shenyang 110 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期899-902,共4页
Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seve... Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seven times revert and ten times revert. With the increasing of thermal fatigue cycles, the crack of revert grows a little faster than virgin. When the cycle time reaches 200, the crack length for both virgin and reverts have been as long as 2mm. The low cycle fatigue life has no remarkable change, with the increase of revert cycles at 815℃, 360MPa ,0 5Hz. With the times of cycles increasing, it is found that the content of impurity and gas in alloy change a little, and there is no obvious change for dendrite microstructure. 展开更多
关键词 REVERT cobalt-base superalloy thermal FATIGUE low cycle FATIGUE MICROSTRUCTURE
下载PDF
HIGH TEMPERATURE FATIGUE BEHAVIOUR OF A DIRECTIONALLY SOLIDIFIED COBALT-BASE SUPERALLOY 被引量:4
3
作者 W.H.JIANG X.D.YAO +1 位作者 H.R.GUAN Z.Q.HU 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第2期111-115,共5页
The high temperature high cycle fatigue behaviour of a directionally solidified Co-base superalloy was investigated. The alloy has saperior fatigue resistance at 900℃ and its fatigue strength is up to 295MPa. Its σ-... The high temperature high cycle fatigue behaviour of a directionally solidified Co-base superalloy was investigated. The alloy has saperior fatigue resistance at 900℃ and its fatigue strength is up to 295MPa. Its σ-Nf curve is characterized by three distinct zones. The stronger dependence of Nf on or in the high .and low stress zones results from multiple fatigue crock initiation sites produced by high stress and oxidation effect in a prolonged exposure, respectively. 展开更多
关键词 directional solidification Co-base superalloy fatigue fracture
下载PDF
The Intrinsic Relationship Between Microstructure Evolution and Thermal Fatigue Behavior of a Single-Crystal Cobalt-Base Superalloy 被引量:3
4
作者 Wei-Min Gui Hong-Yu Zhang +3 位作者 Min Yang Tao Jin Xiao-Feng Sun Qi Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第12期1192-1200,共9页
The intrinsic relationship between the microstructure evolution and thermal fatigue behavior of a single-crystal cobalt-base superalloy has been investigated. The thermal fatigue tests are performed cyclically between... The intrinsic relationship between the microstructure evolution and thermal fatigue behavior of a single-crystal cobalt-base superalloy has been investigated. The thermal fatigue tests are performed cyclically between room temperature and 1050 ℃ using V-notch plate specimens. Three states of thermal fatigue specimens are selected: the as-cast, solutionized as well as aged states. The solution treatment is carried out at 1260 ℃ for 24 h, which results in the dissolution of most of interdendritic continuous primary carbides. The subsequent aging treatment is carried out at 1100 ℃ for 100 h after solution treatment, resulting in the precipitation of a profusion of chain- and point-like M23C6 carbides in the matrix. The results indicate that the heat treatment can improve the thermal fatigue properties of the alloy and the effect of the solution treatment is more prominent than that of the aging treatment. The coarse and continuously distributed primary carbides in the as-cast state are changed into small and discontinuous distribution by heat treatment, which is the dominant factor in the improvement of thermal fatigue property. Additionally, the effect of oxidation behavior during thermal fatigue test on the thermal fatigue behavior is also studied. 展开更多
关键词 cobalt-base superalloys Heat treatment Thermal fatigue Carbide Oxidation
原文传递
Formation Mechanism of Lamellar M_(23)C_6 Carbide in a Cobalt-Base Superalloy During Thermal Exposure at 1000℃
5
作者 Wei-Min Gui Hong-Yu Zhang +3 位作者 Hai-Bo Long Tao Jin Xiao-Feng Sun Qi Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第1期27-32,共6页
The precipitation of the lamellar-shaped M23C6 carbide within the dendritic matrix of a cobalt-base superalloy during thermal exposure at 1000 ℃ has been investigated. Such a precipitation is not commonly observed in... The precipitation of the lamellar-shaped M23C6 carbide within the dendritic matrix of a cobalt-base superalloy during thermal exposure at 1000 ℃ has been investigated. Such a precipitation is not commonly observed in cobalt-base superalloys. It is found that M23C6 particles nucleate preferentially at stacking faults (SFs) in the dendritic matrix and grow along the SFs to develop a lamellar character. Additionally, a Cr depletion zone is observed in the vicinity of the lamellar M23C6 carbide, which strongly supports the presence of Suzuki segregation. 展开更多
关键词 cobalt-base superalloy Carbide precipitation Thermal exposure Scanning/transmission electron microscopy
原文传递
Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ′-cobalt-based superalloy 被引量:5
6
作者 Saeed Aliakbari Sani Hossein Arabi +1 位作者 Shahram Kheirandish Golamreza Ebrahimi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第2期222-233,共12页
The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt-based superalloy. Several samples were prepared from a cast alloy and homogeni... The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt-based superalloy. Several samples were prepared from a cast alloy and homogenized at 1300°C for different times, with a maximum of 24 h. A microstructural study of the cast alloy using wavelength-dispersive spectroscopic analysis revealed that elements such as Al, Ti, and Ni segregated mostly within interdendritic regions, whereas W atoms were segregated within dendrite cores. With an increase in homogenization time, segregation decreased and the initial dendritic structure was eliminated. Field-emission scanning electron microscopy micrographs showed that the γ′ phases in the cores and interdendritic regions of the as-cast alloy were 392 and 124 nm, respectively. The size difference of γ′ was found to be due to the different segregation behaviors of constituent elements during solidification. After homogenization, particularly after 16 h, segregation decreased; thus, the size, chemical composition, and hardness of the precipitated γ′ phase was mostly uniform throughout the samples. 展开更多
关键词 superalloy SEGREGATION HOMOGENIZATION MICROSTRUCTURE γ′phase
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:2
7
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
8
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Effect of Ti and Ta content on the oxidation resistance of Co-Ni-based superalloys 被引量:1
9
作者 Yuheng Zhang Zixin Li +2 位作者 Yunwei Gui Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期351-361,共11页
Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature s... Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form. 展开更多
关键词 Co-Ni-based superalloys high-temperature oxidation Ti and Ta elements formation mechanism of holes
下载PDF
A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
10
作者 Xiaorui Zhang Min Zou +3 位作者 Song Lu Longfei Li Xiaoli Zhuang Qiang Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1373-1381,共9页
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical proper... A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr. 展开更多
关键词 CoNi-based superalloys microstructure COARSENING OXIDATION mechanical properties
下载PDF
Cracking on a nickel-based superalloy fabricated by direct energy deposition
11
作者 Xue Zhang Ya-hang Mu +4 位作者 Liang Ma Jing-jing Liang Yi-zhou Zhou Xiao-feng Sun Jin-guo Li 《China Foundry》 SCIE EI CAS CSCD 2024年第4期311-318,共8页
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s... Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys. 展开更多
关键词 LOCATION cracks direct energy deposition nickel-based superalloys
下载PDF
A review of linear friction welding of Ni -based superalloys
12
作者 Xiawei Yang Tingxi Meng +6 位作者 Qiang Chu Yu Su Zhenguo Guo Rui Xu Wenlong Fan Tiejun Ma Wenya Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1382-1391,共10页
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,... Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process. 展开更多
关键词 Ni-based superalloys linear friction welding MICROSTRUCTURES mechanical properties flash morphology
下载PDF
Oxidation behavior of 4774DD1 Ni-based single-crystal superalloy at 980℃ in air
13
作者 Yu Fang Ya-zhou Li +7 位作者 Qiang Yang Qun-gong He Xiu-fang Gong Qian Duan Hai-yang Song Fu Wang Qiong-yuan Zhang Hong Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期116-124,共9页
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method... The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h. 展开更多
关键词 nickel-base single crystal superalloy oxidation kinetics oxide film MICROSTRUCTURE mechanism
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
14
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Fatigue crack propagation behavior of K40S cobalt-base superalloy at elevated temperature 被引量:1
15
作者 杨富民 孙晓峰 +3 位作者 管恒荣 邓午立 刘芳 胡壮麒 《中国有色金属学会会刊:英文版》 CSCD 2003年第1期50-54,共5页
Fatigue crack propagation behavior of K40S cobalt-base superalloy under ambient atmosphere at 700 ℃ and 900 ℃ was investigated. The detailed fatigue crack propagation and fracture mechanism under the alternating loa... Fatigue crack propagation behavior of K40S cobalt-base superalloy under ambient atmosphere at 700 ℃ and 900 ℃ was investigated. The detailed fatigue crack propagation and fracture mechanism under the alternating loads were studied. The results show that, there is a defined threshold for K40S alloy at elevated temperatures. The fatigue threshold is 23.9 MPa·m 1/2 at 700 ℃ and 12 MPa·m 1/2 at 900 ℃. The significant decrease of the threshold with increasing temperature is associated with the oxidation induced embrittlement at crack tip. Observation on the fatigue fracture surfaces indicates a ductile fracture mechanism related to the fatigue crack growth. 展开更多
关键词 钴基超合金 疲劳断裂 失效极限 延展性 高温
下载PDF
Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties
16
作者 周昌杰 范骁乐 +3 位作者 朱立华 陈闯 贺建超 计红军 《China Welding》 CAS 2024年第2期1-10,共10页
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen... Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa. 展开更多
关键词 Ni-based superalloy powder transient liquid phase bonded joint shear strength
下载PDF
In-situ loading neutron-diffraction studies of a cobalt-based superalloy
17
作者 M. L. BENSON P. K LIAW +7 位作者 H. CHOO T. A. SALEH D. W. BROWN M. R. DAYMOND X. L. WANG A. D. STOICA E. C. OLIVER D. L. KLARSTROM 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期144-148,共5页
关键词 钴基高温合金 现场加载 中子衍射 FCC HCP 相变
下载PDF
Effects of Y_2O_3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process 被引量:7
18
作者 HOU Qingyu HUANG Zhenyi GAO Jiasheng 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期103-109,共7页
Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of th... Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties. 展开更多
关键词 cobalt-based alloy plasma transferred arc (PTA) Y2O3 MICROSTRUCTURE wear resistance
下载PDF
Influences of the microstructure on the wear resistance of cobalt-based alloy coatings obtained by plasma transferred arc process 被引量:1
19
作者 HOUQingyu GAOJiasheng 《Rare Metals》 SCIE EI CAS CSCD 2005年第1期76-81,共6页
The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD)... The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample. 展开更多
关键词 cobalt-based alloy plasma transferred arc (PTA) MICROSTRUCTURE wear
下载PDF
Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc-air batteries 被引量:1
20
作者 Shanjing Liu Xiaohan Wan +7 位作者 Yue Sun Shiqi Li Xingmei Guo Ming Li Rui Yin Qinghong Kong Jing Kong Junhao Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第12期2212-2220,共9页
To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprisi... To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprising Co,Co_(3)O_(4)and CoN,as well as numerous N heteroatoms,on graphene nanosheets(Co/Co_(3)O_(4)/CoN/NG).The Co/Co_(3)O_(4)/CoN nanoparticles with the size of less than 50 nm are homogeneously dispersed on N-doped graphene(NG)substrate,which greatly improve the catalytic behaviors for ORR.The results show that the half-wave potential is as high as 0.80 V vs.RHE and the limiting current density is 4.60 mA·cm^(−2),which are close to those of commercially available platinum/carbon(Pt/C)catalysts.Applying as cathodic catalyst for ZABs,the battery shows large specific capacity and open circuit voltage of 843.0 mAh∙g^(−1) and 1.41 V,respectively.The excellent performance is attributed to the efficient two-dimensional structure with high accessible surface area and the numerous multiple active sites provided by highly scattered Co/Co_(3)O_(4)/CoN particles and doped nitrogen on the carbon matrix. 展开更多
关键词 adsorption-complexation-calcination cobalt-based multicomponent nanoparticles N-doped graphene oxygen reduction reaction zinc-air batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部