Plasma-synthesized cobalt oxide supported on carbon has been analyzed for its use for electrocatalytic oxygen reduction reaction (ORR) in alkaline anion exchange membrane fuel cells (AEMFC). This work presents the...Plasma-synthesized cobalt oxide supported on carbon has been analyzed for its use for electrocatalytic oxygen reduction reaction (ORR) in alkaline anion exchange membrane fuel cells (AEMFC). This work presents the ORR activity in 0.1 mol L-1 KOH and 0.1 tool L-1 K2CO3 at 25 ℃. Cyclic voltammetry (CV) was used to determine the potentials at which the ORR occurs and to evaluate the stability of catalyst. Moreover, a rotating ring-disk electrode (RRDE) was used to investigate the activity of the catalysts and the formation of the by-product hydroperoxide anion (HO2-) as well as to identify the preferred pathway of the ORR. Calculated kinetic parameters for the ORR for the cobalt catalysts are shown in this work together with a comparison to a commercial platinum catalyst. However, the cobalt oxide produced more by-products which could lead to damage of the membrane in a fuel cell through a radical attack of the polymer backbone.展开更多
Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorgani...Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorganic/organic surface binder-free and were used to catalyze oxygen evolution reaction. Water oxidation can take place in neutral electrolyte operating with modest overpotential. The doping of other transitional metal cations affords mix valences and thus more intimate electronic interactions for reversible chemisorption of dioxygen molecules. The application of employing LDH materials in water oxidation process bodes well to facilitate future hydrogen utilization.展开更多
文摘Plasma-synthesized cobalt oxide supported on carbon has been analyzed for its use for electrocatalytic oxygen reduction reaction (ORR) in alkaline anion exchange membrane fuel cells (AEMFC). This work presents the ORR activity in 0.1 mol L-1 KOH and 0.1 tool L-1 K2CO3 at 25 ℃. Cyclic voltammetry (CV) was used to determine the potentials at which the ORR occurs and to evaluate the stability of catalyst. Moreover, a rotating ring-disk electrode (RRDE) was used to investigate the activity of the catalysts and the formation of the by-product hydroperoxide anion (HO2-) as well as to identify the preferred pathway of the ORR. Calculated kinetic parameters for the ORR for the cobalt catalysts are shown in this work together with a comparison to a commercial platinum catalyst. However, the cobalt oxide produced more by-products which could lead to damage of the membrane in a fuel cell through a radical attack of the polymer backbone.
文摘Co-M (M= Co, Ni, Fe, Mn) layered double hydroxides (LDHs) were successfully fabricated by a hexamethylenetetramine (HMT) pyrolysis method. Composite electrodes were made using a self-assembly fashion at inorganic/organic surface binder-free and were used to catalyze oxygen evolution reaction. Water oxidation can take place in neutral electrolyte operating with modest overpotential. The doping of other transitional metal cations affords mix valences and thus more intimate electronic interactions for reversible chemisorption of dioxygen molecules. The application of employing LDH materials in water oxidation process bodes well to facilitate future hydrogen utilization.