Pilot needs to process lots of information when operating an aircraft, and reasonable information coding can greatly improve the correct rate and speed of information identification. At present, related researches are...Pilot needs to process lots of information when operating an aircraft, and reasonable information coding can greatly improve the correct rate and speed of information identification. At present, related researches are mainly performed in the laboratory, and the experiment method for abstract simulation is often used to research single digit information coding. The research results demonstrate a lack of systematization and applicability. The present study is based upon information coding methods of human-machine interface under real time in flight simulators. Subjects are required to perform an aircraft landing and the corresponding experiment task. The correct rate and reaction time are chosen as the performance evaluation indexes, combined with eye movement data. The advantages and disadvantages of different information coding methods are also evaluated and analyzed. The experiment results demonstrate that the effect of color coding on the correct rate of information identification is not significant, but the effect on the speed of information identification is obviously significant. The study demonstrates that on a black background, red, green and yellow are suitable colors for color coding, but blue is not. The position of information on the performance of information identification is also significant. The center of the interface is better than the edge, and the left position is superior to the right. The impact of language and a person's mother tongue should also be considered in practical applications. The study shows that the Chinese has a higher correct rate of identification than English. As the experiment research method in the present study is based on flight simulator, the actual utility and application value can be guaranteed. The research results have the ability to offer improvements in ergonomic reference for cockpit human-machine interface design.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
Unpredictable meteorological information, especially that endangers flight safety, should be transmitted to a cockpit to make a flight crew obtain meteorological early warning that affects flight safety as soon as pos...Unpredictable meteorological information, especially that endangers flight safety, should be transmitted to a cockpit to make a flight crew obtain meteorological early warning that affects flight safety as soon as possible and adopt countermeasures, thereby avoiding the occurrence of flight safety accidents. At present, there are limited ways of transmitting meteorological information to a cockpit, and the application of Automatic Dependent Surveillance-Broadcast (ADS-B) is a new way of transmitting meteorological information to a cockpit.展开更多
The rational design of airflow distribution is of great importance for comfort and energy conservation.Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study ...The rational design of airflow distribution is of great importance for comfort and energy conservation.Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study the distinct airflow distribution.This study developed the coupled heat transfer model of radiation,convection,and heat conduction for the cockpit flight environment.A three-dimensional physical model was created and a shear stress transfer(SST)k-w turbulence model was well verified with a high prediction accuracy of 91%for the experimental data.The strong inhomogeneous flow and temperature distribution were captured for various initial operating conditions(inlet temperature,inlet pressure,and gravitational acceleration).The results indicated that the common feature of the flow field was stable in the middle part of the cockpit,while the temperature field showed a large temperature gradient near the cockpit’s top region.It was also found that there was remarkable consistency in the distributed features,regardless of the applied initial operating conditions.Additionally,the mass flux and the top heat source greatly affected the flow and temperature characteristics.This study suggests that an optimized operating condition does exist and that this condition makes the flow and temperature field more stable in the cockpit.The corresponding results can provide necessary theoretical guidance for the further design of the cockpit structure.展开更多
Karst groundwater is highly vulnerable to contamination,which urges better land use zoning.This paper proposes a new approach,called COCKPIT-PLUS,to minimize groundwater contamination within cockpit karst regions.The ...Karst groundwater is highly vulnerable to contamination,which urges better land use zoning.This paper proposes a new approach,called COCKPIT-PLUS,to minimize groundwater contamination within cockpit karst regions.The method employed four parameters:P(the existence of ponor/swallow hole),L(lineament density),U(sinking stream to an underground river),and S(distance to spring/pumping site).These parameters are essential for identifying contaminant pathways and transport from the surface to the karst groundwater/springs.COCKPIT-PLUS has been developed and validated in the Gunungsewu karst in Java,Indonesia.This research considers a cockpit as a single hydrological unit that uniquely recharges karst groundwater.We analyzed 2,811 cockpits and 81 other closed depressions to develop a land use planning map.The research used the time to first arrival(Ta),time to peak(Tp),and Q_(max/min)ratio parameters of two karst springs and two underground pumping sites for validation.Cockpits with ponors/swallow holes,sinking streams,high lineament density,and short distances to springs are vulnerable to groundwater and thus must be restricted areas for any land uses.The findings show that though the COCKPIT-PLUS uses a limited karst dataset,the proposed method seems reliable enough for a rapid land-use zoning approach in cockpit karst areas.展开更多
When the damage to a natural heritage is unavoidable, recording the natural heritage before damage may be the only way we can achieve to preserve the heritage in digital format. In this paper, we introduce a video-bas...When the damage to a natural heritage is unavoidable, recording the natural heritage before damage may be the only way we can achieve to preserve the heritage in digital format. In this paper, we introduce a video-based tele-immersive system, called the Immersive Cockpit. It captures live videos from the interested site and recreates an immersive environment at the remote site where the user situates. With this system, users/audiences can immerse into the recreated natural heritage even the heritage no longer exists. The design goals of our system are real-time, live, low-cost and scalable. We stitch multiple video streams captured from ordinary CCD cameras to generate a panoramic video. To avoid being blocked by the supporting frame, we allow a flexible placement of cameras. This approach trades the accuracy of the generated panorama image for a larger field-of-view. The panoramic video is presented on an immersive display which covers the field-of-view of the viewer. We discuss how to correctly present the panoramic video on this non-planar immersive display screen by sweet spot relocation. We also present the result and the performance evaluation of the system.展开更多
A method of robust speech endpoint detection in airplane cockpit voice background is presented. Based on the analysis of background noise character, a complex Laplacian distribution model directly aiming at noisy spee...A method of robust speech endpoint detection in airplane cockpit voice background is presented. Based on the analysis of background noise character, a complex Laplacian distribution model directly aiming at noisy speech is established. Then the likelihood ratio test based on binary hypothesis test is carried out. The decision criterion of conventional maximum a posterior incorporating the inter-frame correlation leads to two separate thresholds. Speech endpoint detection decision is finally made depend on the previous frame and the observed spectrum, and the speech endpoint is searched based on the decision. Compared with the typical algorithms, the proposed method operates robust in the airplane cockpit voice background.展开更多
The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.T...The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.To address this demand,a robotic automated 3D reconstruction cell which enables to autonomously plan the robot end-camera’s trajectory is developed for image acquisition and 3D modeling of the cockpit operation scene.A continuous viewpoint path planning algorithm is proposed that incorporates both 3D reconstruction quality and robot path quality into optimization process.Smoothness metrics for viewpoint position paths and orientation paths are introduced together for the first time in 3D reconstruction.To ensure safe and effective movement,two spatial constraints,Domain of View Admissible Position(DVAP)and Domain of View Admissible Orientation(DVAO),are implemented to account for robot reachability and collision avoidance.By using diffeomorphism mapping,the orientation path is transformed into 3D,consistent with the position path.Both orientation and position paths can be optimized in a unified framework to maximize the gain of reconstruction quality and path smoothness within DVAP and DVAO.The reconstruction cell is capable of automatic data acquisition and fine scene modeling,using the generated robot C-space trajectory.Simulation and physical scene experiments have confirmed the effectiveness of the proposed method to achieve highprecision 3D reconstruction while optimizing robot motion quality.展开更多
The design concept of high excess pressure cockpit has been proposed as a solution to solve the ergonomics problems caused by cockpit environment.To address the contradiction among mass,economy,maneuverability and env...The design concept of high excess pressure cockpit has been proposed as a solution to solve the ergonomics problems caused by cockpit environment.To address the contradiction among mass,economy,maneuverability and environment ergonomics,considering the composite advantages of high strength and lightweight,the feasibility analysis concept of high excess pressure cockpit based on material substitution is proposed in the paper.Based on the strain energy analysis on finite element model,the iteration design method of equal stiffness and lightening effect analysis on material substitution are presented,The weight reduction effect after material substitution can be evaluated intuitively by using equal stiffness curve.The calculation result of cockpit indicates that the lightening effect can reach 35.09%.Because of the complexity of cockpit design,bi-level optimization method is proposed and performed by means of the First-Order Radio algorithm.The research shows that the method can achieve good result.The feasibility of high excess pressure cockpit is studied from the aspect of the relationship between excess pressure and mass,and the research demonstrates that,due to the utilization of T300/4211 in place of 6061 alloy,the excess pressure of cockpit increases from 35 to 45 kPa,a 28.57%increase,while the cockpit mass is decreased by 12.56%.Thus,the contradiction among mass,economy and environment ergonomics can be coordinated,which can provide a reference for the design of high excess pressure cockpit.展开更多
Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered t...Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.展开更多
With respect to the ergonomic evaluation and optimization in the mental task design of the aircraft cockpit display interface, the experimental measurement and theoretical modeling of mental workload were carried out ...With respect to the ergonomic evaluation and optimization in the mental task design of the aircraft cockpit display interface, the experimental measurement and theoretical modeling of mental workload were carried out under flight simulation task conditions using the performance evaluation, subjective evaluation and physiological measurement methods. The experimental results show that with an increased mental workload, the detection accuracy of flight operation significantly reduced and the reaction time was significantly prolonged; the standard deviation of R-R intervals(SDNN) significantly decreased, while the mean heart rate exhibited little change; the score of NASA_TLX scale significantly increased. On this basis, the indexes sensitive to mental workload were screened, and an integrated model for the discrimination and prediction of mental workload of aircraft cockpit display interface was established based on the Bayesian Fisher discrimination and classification method. The original validation and cross-validation methods were employed to test the accuracy of the results of discrimination and prediction of the integrated model, and the average prediction accuracies determined by these two methods are both higher than 85%. Meanwhile, the integrated model shows a higher accuracy in discrimination and prediction of mental workload compared with single indexes. The model proposed in this paper exhibits a satisfactory coincidence with the measured data and could accurately reflect the variation characteristics of the mental workload of aircraft cockpit display interface, thus providing a basis for the ergonomic evaluation and optimization design of the aircraft cockpit display interface in the future.展开更多
This study presented a quantitative comparison of cockpit and doline karst by examining the numbers and characteristics of typical types of landform entities that are developed in Guilin(Guangxi, China), La Alianza...This study presented a quantitative comparison of cockpit and doline karst by examining the numbers and characteristics of typical types of landform entities that are developed in Guilin(Guangxi, China), La Alianza(PR, USA), Avalton(KY, USA), and Oolitic(IN, USA). Five types of landform entities were defined: isolated hill(IH), clustered hills(CHs), isolated sinkhole(IS), clustered sinkholes(CSs), and clustered hills with sinkholes(CHSs). An algorithm was developed to automatically identify these types of landform entities by examining the contour lines on topographic maps of two cockpit karst areas(Guilin and La Alianza) and two doline karst areas(Oolitic and Avalton). Within each specific study area, the CHSs is the least developed type yet with a larger size and higher relief. The IH and IS entities are smaller in size, lower in relief, and outnumber their clustered counterparts. The total numbers of these types of entities are quite different in cockpit and doline karst areas. Doline karst is characterized by more negative(IS and CSs) than positive(IH and IHs) landforms and vice versa for cockpit karst. For example, the Guilin study area has 1192 positive landform entities in total, which occupy 9.81% of the total study area. It has only 622 negative landform entities occupying only 3.91% of the total study area. By contrast, the doline karst in Oolitic has 130 negative while only 10 positive landform entities. The positive and negative landforms in Oolitic occupy 12.68% and 2.61% of the total study area, respectively. Furthermore, average relief and slope of the landform entities are much higher and steeper in the cockpit karst than the doline karst areas. For instance, the average slope of CHs in Alvaton is 3.90 degrees while it is 19.78 degrees in La Alianza. The average relief of CSs is 4.07 m and 34.29 m in Oolitic and Guilin respectively. Such a difference within a specific area or between the cockpit and doline karst may reveal different controls on the development of karst landscape.展开更多
为解决传统座舱试验台结构同质化及模块化设计不足等问题,采用亲和图法整理了汽车故障及用户初始需求;采用模糊Kano模型进行需求指标权重计算,并结合质量特性要素进行用户核心需求汇总;通过功能分析系统技术(Function Analysis System T...为解决传统座舱试验台结构同质化及模块化设计不足等问题,采用亲和图法整理了汽车故障及用户初始需求;采用模糊Kano模型进行需求指标权重计算,并结合质量特性要素进行用户核心需求汇总;通过功能分析系统技术(Function Analysis System Technique,FAST)黑箱模型将用户需求转化为功能需求,并引入公理设计(Axiomatic Design,AD)理论与功能-行为-结构(Function-Behavior-Structure,FBS)模型进行逐级映射,最终确定智能座舱柔性试验台的结构设计要素。该设计过程以用户核心需求为导向,通过FAST-AD-FBS集成方法的应用,克服了传统产品概念设计中用户需求与产品功能结构设计间存在矛盾的问题,为提高产品创新设计的完整性及准确性提供了理论参考。展开更多
基金supported by National Basic Research Program of China (973 Program, Grant No. 2010CB734104)
文摘Pilot needs to process lots of information when operating an aircraft, and reasonable information coding can greatly improve the correct rate and speed of information identification. At present, related researches are mainly performed in the laboratory, and the experiment method for abstract simulation is often used to research single digit information coding. The research results demonstrate a lack of systematization and applicability. The present study is based upon information coding methods of human-machine interface under real time in flight simulators. Subjects are required to perform an aircraft landing and the corresponding experiment task. The correct rate and reaction time are chosen as the performance evaluation indexes, combined with eye movement data. The advantages and disadvantages of different information coding methods are also evaluated and analyzed. The experiment results demonstrate that the effect of color coding on the correct rate of information identification is not significant, but the effect on the speed of information identification is obviously significant. The study demonstrates that on a black background, red, green and yellow are suitable colors for color coding, but blue is not. The position of information on the performance of information identification is also significant. The center of the interface is better than the edge, and the left position is superior to the right. The impact of language and a person's mother tongue should also be considered in practical applications. The study shows that the Chinese has a higher correct rate of identification than English. As the experiment research method in the present study is based on flight simulator, the actual utility and application value can be guaranteed. The research results have the ability to offer improvements in ergonomic reference for cockpit human-machine interface design.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
文摘Unpredictable meteorological information, especially that endangers flight safety, should be transmitted to a cockpit to make a flight crew obtain meteorological early warning that affects flight safety as soon as possible and adopt countermeasures, thereby avoiding the occurrence of flight safety accidents. At present, there are limited ways of transmitting meteorological information to a cockpit, and the application of Automatic Dependent Surveillance-Broadcast (ADS-B) is a new way of transmitting meteorological information to a cockpit.
基金the Fundamental Research Funds for the Central Universities.(Project No.31020190504004).
文摘The rational design of airflow distribution is of great importance for comfort and energy conservation.Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study the distinct airflow distribution.This study developed the coupled heat transfer model of radiation,convection,and heat conduction for the cockpit flight environment.A three-dimensional physical model was created and a shear stress transfer(SST)k-w turbulence model was well verified with a high prediction accuracy of 91%for the experimental data.The strong inhomogeneous flow and temperature distribution were captured for various initial operating conditions(inlet temperature,inlet pressure,and gravitational acceleration).The results indicated that the common feature of the flow field was stable in the middle part of the cockpit,while the temperature field showed a large temperature gradient near the cockpit’s top region.It was also found that there was remarkable consistency in the distributed features,regardless of the applied initial operating conditions.Additionally,the mass flux and the top heat source greatly affected the flow and temperature characteristics.This study suggests that an optimized operating condition does exist and that this condition makes the flow and temperature field more stable in the cockpit.The corresponding results can provide necessary theoretical guidance for the further design of the cockpit structure.
文摘Karst groundwater is highly vulnerable to contamination,which urges better land use zoning.This paper proposes a new approach,called COCKPIT-PLUS,to minimize groundwater contamination within cockpit karst regions.The method employed four parameters:P(the existence of ponor/swallow hole),L(lineament density),U(sinking stream to an underground river),and S(distance to spring/pumping site).These parameters are essential for identifying contaminant pathways and transport from the surface to the karst groundwater/springs.COCKPIT-PLUS has been developed and validated in the Gunungsewu karst in Java,Indonesia.This research considers a cockpit as a single hydrological unit that uniquely recharges karst groundwater.We analyzed 2,811 cockpits and 81 other closed depressions to develop a land use planning map.The research used the time to first arrival(Ta),time to peak(Tp),and Q_(max/min)ratio parameters of two karst springs and two underground pumping sites for validation.Cockpits with ponors/swallow holes,sinking streams,high lineament density,and short distances to springs are vulnerable to groundwater and thus must be restricted areas for any land uses.The findings show that though the COCKPIT-PLUS uses a limited karst dataset,the proposed method seems reliable enough for a rapid land-use zoning approach in cockpit karst areas.
文摘When the damage to a natural heritage is unavoidable, recording the natural heritage before damage may be the only way we can achieve to preserve the heritage in digital format. In this paper, we introduce a video-based tele-immersive system, called the Immersive Cockpit. It captures live videos from the interested site and recreates an immersive environment at the remote site where the user situates. With this system, users/audiences can immerse into the recreated natural heritage even the heritage no longer exists. The design goals of our system are real-time, live, low-cost and scalable. We stitch multiple video streams captured from ordinary CCD cameras to generate a panoramic video. To avoid being blocked by the supporting frame, we allow a flexible placement of cameras. This approach trades the accuracy of the generated panorama image for a larger field-of-view. The panoramic video is presented on an immersive display which covers the field-of-view of the viewer. We discuss how to correctly present the panoramic video on this non-planar immersive display screen by sweet spot relocation. We also present the result and the performance evaluation of the system.
文摘A method of robust speech endpoint detection in airplane cockpit voice background is presented. Based on the analysis of background noise character, a complex Laplacian distribution model directly aiming at noisy speech is established. Then the likelihood ratio test based on binary hypothesis test is carried out. The decision criterion of conventional maximum a posterior incorporating the inter-frame correlation leads to two separate thresholds. Speech endpoint detection decision is finally made depend on the previous frame and the observed spectrum, and the speech endpoint is searched based on the decision. Compared with the typical algorithms, the proposed method operates robust in the airplane cockpit voice background.
基金supported by the National Key Research and Development Program of China(2019YFB1707505)the National Natural Science Foundation of China(Grant No.52005436)。
文摘The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.To address this demand,a robotic automated 3D reconstruction cell which enables to autonomously plan the robot end-camera’s trajectory is developed for image acquisition and 3D modeling of the cockpit operation scene.A continuous viewpoint path planning algorithm is proposed that incorporates both 3D reconstruction quality and robot path quality into optimization process.Smoothness metrics for viewpoint position paths and orientation paths are introduced together for the first time in 3D reconstruction.To ensure safe and effective movement,two spatial constraints,Domain of View Admissible Position(DVAP)and Domain of View Admissible Orientation(DVAO),are implemented to account for robot reachability and collision avoidance.By using diffeomorphism mapping,the orientation path is transformed into 3D,consistent with the position path.Both orientation and position paths can be optimized in a unified framework to maximize the gain of reconstruction quality and path smoothness within DVAP and DVAO.The reconstruction cell is capable of automatic data acquisition and fine scene modeling,using the generated robot C-space trajectory.Simulation and physical scene experiments have confirmed the effectiveness of the proposed method to achieve highprecision 3D reconstruction while optimizing robot motion quality.
文摘The design concept of high excess pressure cockpit has been proposed as a solution to solve the ergonomics problems caused by cockpit environment.To address the contradiction among mass,economy,maneuverability and environment ergonomics,considering the composite advantages of high strength and lightweight,the feasibility analysis concept of high excess pressure cockpit based on material substitution is proposed in the paper.Based on the strain energy analysis on finite element model,the iteration design method of equal stiffness and lightening effect analysis on material substitution are presented,The weight reduction effect after material substitution can be evaluated intuitively by using equal stiffness curve.The calculation result of cockpit indicates that the lightening effect can reach 35.09%.Because of the complexity of cockpit design,bi-level optimization method is proposed and performed by means of the First-Order Radio algorithm.The research shows that the method can achieve good result.The feasibility of high excess pressure cockpit is studied from the aspect of the relationship between excess pressure and mass,and the research demonstrates that,due to the utilization of T300/4211 in place of 6061 alloy,the excess pressure of cockpit increases from 35 to 45 kPa,a 28.57%increase,while the cockpit mass is decreased by 12.56%.Thus,the contradiction among mass,economy and environment ergonomics can be coordinated,which can provide a reference for the design of high excess pressure cockpit.
基金supported by National Basic Research Program of China(No.2010CB734104)
文摘Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.
基金supported by the National Basic Research Program of China (No. 2010CB734104)
文摘With respect to the ergonomic evaluation and optimization in the mental task design of the aircraft cockpit display interface, the experimental measurement and theoretical modeling of mental workload were carried out under flight simulation task conditions using the performance evaluation, subjective evaluation and physiological measurement methods. The experimental results show that with an increased mental workload, the detection accuracy of flight operation significantly reduced and the reaction time was significantly prolonged; the standard deviation of R-R intervals(SDNN) significantly decreased, while the mean heart rate exhibited little change; the score of NASA_TLX scale significantly increased. On this basis, the indexes sensitive to mental workload were screened, and an integrated model for the discrimination and prediction of mental workload of aircraft cockpit display interface was established based on the Bayesian Fisher discrimination and classification method. The original validation and cross-validation methods were employed to test the accuracy of the results of discrimination and prediction of the integrated model, and the average prediction accuracies determined by these two methods are both higher than 85%. Meanwhile, the integrated model shows a higher accuracy in discrimination and prediction of mental workload compared with single indexes. The model proposed in this paper exhibits a satisfactory coincidence with the measured data and could accurately reflect the variation characteristics of the mental workload of aircraft cockpit display interface, thus providing a basis for the ergonomic evaluation and optimization design of the aircraft cockpit display interface in the future.
基金The State Key Laboratory of Resources and Environmental Information System,No.088RA500KA National Natural Science Foundation of China,No.41071250No.41371378
文摘This study presented a quantitative comparison of cockpit and doline karst by examining the numbers and characteristics of typical types of landform entities that are developed in Guilin(Guangxi, China), La Alianza(PR, USA), Avalton(KY, USA), and Oolitic(IN, USA). Five types of landform entities were defined: isolated hill(IH), clustered hills(CHs), isolated sinkhole(IS), clustered sinkholes(CSs), and clustered hills with sinkholes(CHSs). An algorithm was developed to automatically identify these types of landform entities by examining the contour lines on topographic maps of two cockpit karst areas(Guilin and La Alianza) and two doline karst areas(Oolitic and Avalton). Within each specific study area, the CHSs is the least developed type yet with a larger size and higher relief. The IH and IS entities are smaller in size, lower in relief, and outnumber their clustered counterparts. The total numbers of these types of entities are quite different in cockpit and doline karst areas. Doline karst is characterized by more negative(IS and CSs) than positive(IH and IHs) landforms and vice versa for cockpit karst. For example, the Guilin study area has 1192 positive landform entities in total, which occupy 9.81% of the total study area. It has only 622 negative landform entities occupying only 3.91% of the total study area. By contrast, the doline karst in Oolitic has 130 negative while only 10 positive landform entities. The positive and negative landforms in Oolitic occupy 12.68% and 2.61% of the total study area, respectively. Furthermore, average relief and slope of the landform entities are much higher and steeper in the cockpit karst than the doline karst areas. For instance, the average slope of CHs in Alvaton is 3.90 degrees while it is 19.78 degrees in La Alianza. The average relief of CSs is 4.07 m and 34.29 m in Oolitic and Guilin respectively. Such a difference within a specific area or between the cockpit and doline karst may reveal different controls on the development of karst landscape.
文摘为解决传统座舱试验台结构同质化及模块化设计不足等问题,采用亲和图法整理了汽车故障及用户初始需求;采用模糊Kano模型进行需求指标权重计算,并结合质量特性要素进行用户核心需求汇总;通过功能分析系统技术(Function Analysis System Technique,FAST)黑箱模型将用户需求转化为功能需求,并引入公理设计(Axiomatic Design,AD)理论与功能-行为-结构(Function-Behavior-Structure,FBS)模型进行逐级映射,最终确定智能座舱柔性试验台的结构设计要素。该设计过程以用户核心需求为导向,通过FAST-AD-FBS集成方法的应用,克服了传统产品概念设计中用户需求与产品功能结构设计间存在矛盾的问题,为提高产品创新设计的完整性及准确性提供了理论参考。