Coda waves are multiply scattered waves that arrive much later than the major waves. Small seismic velocity variations are observed in reservoirs because of small variations in reservoir properties, which affect the f...Coda waves are multiply scattered waves that arrive much later than the major waves. Small seismic velocity variations are observed in reservoirs because of small variations in reservoir properties, which affect the first arrivals. Hence, first arrivals cannot be used to detect small seismic velocity variations. However, small variations can be reliably detected by the coda waves because of the amplification owing to multiple scattering. We investigate the ability of coda wave interferometry to detect seismic velocity variations and monitor time-lapse reservoir characteristics using numerical simulations and experimental data. We use the Marmousi II model and finite-difference methods to build model seismic data and introduce small seismic velocity variations in the target layer. We examine the model seismic data before and after the changes and observe the coda waves. We find that velocity changes can be detected by coda wave interferometry and demonstrate that coda wave interferometry can be used in monitoring time- lapse reservoir characteristics.展开更多
Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-ref...Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.展开更多
Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the as...Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the assumptionof three-dimensional medium with numerous, statistically isotropic and uniformly distributed scatterers, we obtain the analytic form of power spectrum of coda waves for single scattering and the integral form of power spectrum of coda waves for multiple scattering.展开更多
The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the s...The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.展开更多
A filed experiment was conducted continuously for three days,and the velocity variation was measured using coda wave interferometry.The measurement error is estimated to be around 10-4,which coincides well with the th...A filed experiment was conducted continuously for three days,and the velocity variation was measured using coda wave interferometry.The measurement error is estimated to be around 10-4,which coincides well with the theoretical error.The velocity variation during this period is up to 10-3.The relationship between velocity variation and changes in air temperature,barometric pressure and solid earth tide was analyzed with linear least square fitting.The velocity has no dependence on air temperature,but displayed change of the order of 10-6~10-7 when the barometer or earth tide changed one Pa.展开更多
Multiply scattered waves are sensitive to media changes owing to the effect of repeated sampling,superposition and amplification. Based on this characteristic,small-medium changes could be detected by using coda wave ...Multiply scattered waves are sensitive to media changes owing to the effect of repeated sampling,superposition and amplification. Based on this characteristic,small-medium changes could be detected by using coda wave interferometry. In recent years,coda wave interferometry has been widely used in estimating velocity variation with high precision in areas such as seismology and non-destructive testing. This paper systematically presents the principle and research status of coda wave interferometry,and especial focus is placed on the research of media velocity variations by using repeating earthquakes,artificial sources,and ambient noise. Applications of coda wave interferometry can contribute to the more subtle understanding of dynamic evolution process in the medium.展开更多
On 24th February 2004 a significant earthquake (Md = 6.4) occurred in the north of Moroccocausing great damage in the vicinity of Al Hoceima region. This area is characterized by a complex faulting system as a result ...On 24th February 2004 a significant earthquake (Md = 6.4) occurred in the north of Moroccocausing great damage in the vicinity of Al Hoceima region. This area is characterized by a complex faulting system as a result of compressional tectonic forces. Three short period seismic stations are set in this area of interest and recordings from these stations were used in this study. In order to complete our knowledge of attenuation, 60 local earthquakes are recorded a few days after the great earthquake with magnitude Ml 2.6 - 5.0 to estimate seismic attenuation. For this purpose, we applied the single backscattering model of Aki & Chouet 1975 inthe frequency range for 1 to 8 Hz. The study of coda waves was limited to a relatively short lapse time (20 Seconds) in order to sample the earth’s crust only. The values of Qc estimated for all the three stations show a strong frequency dependent relationship of the form Qc = Q0fn, where Q0 is Qc at 1 Hz , and n represents the degree of frequency dependence, and reflects the level of crustal heterogeneities to varying degrees. The average frequency dependent attenuation relationship has been obtained which indicates that the attenuation is high in this region. Finally to conclude our work, the values of Q0 suggest that Al Hoceima area is highly heterogeneous and the n parameter indicates a meaning frequency dependence of Qc.展开更多
We investigate attenuation scattering and loss properties in Souss basin(SW of High-Atlas) as a transition zone between the High and Anti Atlas ranges. This district consists in a thinned crustal patch with shallow se...We investigate attenuation scattering and loss properties in Souss basin(SW of High-Atlas) as a transition zone between the High and Anti Atlas ranges. This district consists in a thinned crustal patch with shallow seismicity and loose sedimentary trenches that perform an important contribution to augment seismic attenuation. So far, no coda waves approach in our knowledge have been used to draw satisfying outputs about the attenuation properties in the region. Therefore, this update suggests to correlate the lateral changes of seismic attenuation to different characteristics and asperities i.e. seismic activity,crustal age and thickness, heat flow, and ground deformation rate. To do so, we analysed coda waves derived from waveform data of more than 23 local earthquakes from seven broadband seismometers recorded during 2010 e2012 period. As a starter, we utilized the backscattering model which defines theseismic attenuation as inversely proportional to quality factor by the equation A ?1=. QQcestimates c were deducted at various central frequency bands 1.5, 3.0, 6.0, 9.0, 12.0 and 18.0 Hz according to different lapses times. The estimated average frequency dependence quality factor gives relation Qc? 120 f1;01,while the average Qcvalues vary from 149 at 1.5 Hz to 1895 at 18 Hz central frequencies. We observed an intimate dependence between quality factor and frequency ranges, which reflects the complexity of geological/geophysical pattern in the Souss basin and the presence of a variety of heterogeneities within the underlying crust.展开更多
Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential informat...Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level.展开更多
For short-period near-earthquake records in eastern China,from the empirical attenuation formula of coda ground motion amplitude A with timeτ:lgA=G-2.235lgτ,using the single scattering theory modified with epicentra...For short-period near-earthquake records in eastern China,from the empirical attenuation formula of coda ground motion amplitude A with timeτ:lgA=G-2.235lgτ,using the single scattering theory modified with epicentral distance,we obtain the curve family of corrected coda amplitude Ac(r,t),and w/2Qc values for each time interval of coda. From this,Qc(f,h) values, which correspond to each observational average frequency and sampling depth,are calculated.The results substantially agree with those observational Qc values in Yunnan,Beijing and central Asia.展开更多
We monitored the amplitude changes of coda transmission waves around 500 kHz across the frictional interface of a simulated 1. 5-meter-long fault during normal stress holding test.We find that the amplitude of coda tr...We monitored the amplitude changes of coda transmission waves around 500 kHz across the frictional interface of a simulated 1. 5-meter-long fault during normal stress holding test.We find that the amplitude of coda transmission waves increases with the logarithm of stationary contact time. Localized increase amounted to a level ranging from 4% to 16%along the fault is observed during the 1-hour experiment. We discuss that the frictional strength at mesoscopic scale,which is related to the amplitude of coda transmission waves,is responsible for the phenomenon. Combining the reported method with other complementary approaches will enhance the understanding of fault mechanism either at laboratory or on-site applications.展开更多
Based on the formulation of a multiple non-isotropic scattering process, a characteristic source time is introduced to define the initial impulse width of energy density at the source. An analytical expression of the ...Based on the formulation of a multiple non-isotropic scattering process, a characteristic source time is introduced to define the initial impulse width of energy density at the source. An analytical expression of the initial intensity spectral density of a seismic wave is incorporated into the integral equation of seismic wave energy density. And, a recursive formula of Green's function is derived to obtain the higher order Green's function, which is included to describe the stronger non-isotropic scattering process. Then, the effect of the scattering pattern on the energy density envelope is investigated by the modified scattering theory. Significant differences arc found in the decay of the energy density envelopes with distances using different scattering patterns. The envelope synthesized by the forward dominated scattering pattern is larger than the results obtained by the isotropic and backward dominated scattering pattern. Different scattering patterns are also used to fit the observation data from the aftershocks of the 2008 Wenchuan earthquake. It is concluded that the envelopes synthesized by the forward scattering pattern can match the data better than the isotropic and backward dominated scattering cases, and a new interpretation of the coda wave is given. Finally, using the forward dominated scattering pattern, the envelope broadening of the observed data is reproduced.展开更多
Based on the single scattering model of seismic coda waves, we have calculated the Q-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed ti...Based on the single scattering model of seismic coda waves, we have calculated the Q-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used.These earthquakes were recorded from January 1, 1989 to December 31,1990 at 20 stations. This paper shows the variations of the coda Q-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the coda Q-factors in these two years. The results indicate that coda Q-factor depends strongly on the lapse time and frequency. It is assumed that when Qc=Q0f″, for the three time windows of 15 -30 s, 30-60 s and 60-90 s, the average values of Q0 are 48, 115 and 217; and the average values of ηare 0.89, 0. 91 and 0. 74, respectively.展开更多
Seismic coda wave is the tail portion of the earthquake record after main arrivals.Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scatteri...Seismic coda wave is the tail portion of the earthquake record after main arrivals.Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scattering effect of the heterogeneities inside the earth.Here,we use records of seven large earthquakes at globally distributed seismic stations to examine the decay of long-period(100 s to 300 s)coda in the time window of 10,000 s to 140,000 s after the origin time and fit it with a statistical model.The geometric spreading effect in the estimated initial energy and a locationindependent equivalent attenuation coefficient indicate that the long-period coda energy is less affected by the heterogeneity-induced scattering effect than that of shorterperiod coda.The coda energy can reach the earth’s inner core and can be explained by a 1D earth model,making it more effective for constraining the global attenuation model.It also has the potential to determine the magnitudes of large earthquakes and to explore the interior of planetary bodies.展开更多
emporal variation of coda Q-1 associated with the occurrence of Dahaituoshan earthquake (ML= 5. 4) and its variation with the seismicity in Beijing area were studied by using 90 local earthquakes from the China Digita...emporal variation of coda Q-1 associated with the occurrence of Dahaituoshan earthquake (ML= 5. 4) and its variation with the seismicity in Beijing area were studied by using 90 local earthquakes from the China Digital Seismograph Network (CDSN). The results showed that there was a significant temporal change in coda Q-1 during the period from Jan. 1987 to Aug. 1991 and it was relative to the seismicity of this area. Coda Q-1 was determined for the lapse time window ranging from 10 to 60 s, frequency 1 to 16 Hz. By comparing the average values of Q-1 for different time periods, we found that in region near the mainshock area the coda Q-1 for earthquakes which occurred after the mainshock were higher than those earthquakes that occurred prior to the mainshock, while the coda Q-1 after the mainshock for the surrounding area were lower than before. We also found the temporal changes in η, the exponential in formula Q-1=Q0-1 (f/f0) -η, and Q0, the Q-factor at 1 Hz. Measurements of coda Q-1 from three components showed inconsistency in temporal variations for different frequencies.展开更多
基金sponsored by the 973 Program of China(No.2013CB228604)the Natural Science Foundation of Shandong Province(No.ZR2013DQ020)+1 种基金the Fundamental Research Funds for the Central Universities(No.15CX08002A)the National Natural Science Foundation of China(No.41374123)
文摘Coda waves are multiply scattered waves that arrive much later than the major waves. Small seismic velocity variations are observed in reservoirs because of small variations in reservoir properties, which affect the first arrivals. Hence, first arrivals cannot be used to detect small seismic velocity variations. However, small variations can be reliably detected by the coda waves because of the amplification owing to multiple scattering. We investigate the ability of coda wave interferometry to detect seismic velocity variations and monitor time-lapse reservoir characteristics using numerical simulations and experimental data. We use the Marmousi II model and finite-difference methods to build model seismic data and introduce small seismic velocity variations in the target layer. We examine the model seismic data before and after the changes and observe the coda waves. We find that velocity changes can be detected by coda wave interferometry and demonstrate that coda wave interferometry can be used in monitoring time- lapse reservoir characteristics.
基金supported by the Strategic Leading Science and Technology Programme(Class B)of the Chinese Academy of Sciences(No.XDB10010400)
文摘Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.
文摘Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the assumptionof three-dimensional medium with numerous, statistically isotropic and uniformly distributed scatterers, we obtain the analytic form of power spectrum of coda waves for single scattering and the integral form of power spectrum of coda waves for multiple scattering.
基金sponsored by the Natural Science Foundation of Shandong Province (Y2007E09)Joint Earthquake Science Foundation (C08028)Special Application Research of Digital Seismic Wave Data ,Shangdong,China
文摘The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.
基金sponsored by the Special R & D Project of China Earthquake Administration(200808002)the Special Project of Basic Scientific Research of the Institute of Geophysics,CEA(DQJB08B13)
文摘A filed experiment was conducted continuously for three days,and the velocity variation was measured using coda wave interferometry.The measurement error is estimated to be around 10-4,which coincides well with the theoretical error.The velocity variation during this period is up to 10-3.The relationship between velocity variation and changes in air temperature,barometric pressure and solid earth tide was analyzed with linear least square fitting.The velocity has no dependence on air temperature,but displayed change of the order of 10-6~10-7 when the barometer or earth tide changed one Pa.
基金sponsored by the Task of Department of Earthquake Monitoring and Prediction,CEAthe Special Fund of Earthquake Scientific Research of China Earthquake Administration(201208003)
文摘Multiply scattered waves are sensitive to media changes owing to the effect of repeated sampling,superposition and amplification. Based on this characteristic,small-medium changes could be detected by using coda wave interferometry. In recent years,coda wave interferometry has been widely used in estimating velocity variation with high precision in areas such as seismology and non-destructive testing. This paper systematically presents the principle and research status of coda wave interferometry,and especial focus is placed on the research of media velocity variations by using repeating earthquakes,artificial sources,and ambient noise. Applications of coda wave interferometry can contribute to the more subtle understanding of dynamic evolution process in the medium.
文摘On 24th February 2004 a significant earthquake (Md = 6.4) occurred in the north of Moroccocausing great damage in the vicinity of Al Hoceima region. This area is characterized by a complex faulting system as a result of compressional tectonic forces. Three short period seismic stations are set in this area of interest and recordings from these stations were used in this study. In order to complete our knowledge of attenuation, 60 local earthquakes are recorded a few days after the great earthquake with magnitude Ml 2.6 - 5.0 to estimate seismic attenuation. For this purpose, we applied the single backscattering model of Aki & Chouet 1975 inthe frequency range for 1 to 8 Hz. The study of coda waves was limited to a relatively short lapse time (20 Seconds) in order to sample the earth’s crust only. The values of Qc estimated for all the three stations show a strong frequency dependent relationship of the form Qc = Q0fn, where Q0 is Qc at 1 Hz , and n represents the degree of frequency dependence, and reflects the level of crustal heterogeneities to varying degrees. The average frequency dependent attenuation relationship has been obtained which indicates that the attenuation is high in this region. Finally to conclude our work, the values of Q0 suggest that Al Hoceima area is highly heterogeneous and the n parameter indicates a meaning frequency dependence of Qc.
基金supported by the Scientific Institute, Rabat, Morocco
文摘We investigate attenuation scattering and loss properties in Souss basin(SW of High-Atlas) as a transition zone between the High and Anti Atlas ranges. This district consists in a thinned crustal patch with shallow seismicity and loose sedimentary trenches that perform an important contribution to augment seismic attenuation. So far, no coda waves approach in our knowledge have been used to draw satisfying outputs about the attenuation properties in the region. Therefore, this update suggests to correlate the lateral changes of seismic attenuation to different characteristics and asperities i.e. seismic activity,crustal age and thickness, heat flow, and ground deformation rate. To do so, we analysed coda waves derived from waveform data of more than 23 local earthquakes from seven broadband seismometers recorded during 2010 e2012 period. As a starter, we utilized the backscattering model which defines theseismic attenuation as inversely proportional to quality factor by the equation A ?1=. QQcestimates c were deducted at various central frequency bands 1.5, 3.0, 6.0, 9.0, 12.0 and 18.0 Hz according to different lapses times. The estimated average frequency dependence quality factor gives relation Qc? 120 f1;01,while the average Qcvalues vary from 149 at 1.5 Hz to 1895 at 18 Hz central frequencies. We observed an intimate dependence between quality factor and frequency ranges, which reflects the complexity of geological/geophysical pattern in the Souss basin and the presence of a variety of heterogeneities within the underlying crust.
基金the National Key R&D Program of China(No.2022YFF0800601)the National Natural Science Foundation of China(No.U1939204).
文摘Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level.
文摘For short-period near-earthquake records in eastern China,from the empirical attenuation formula of coda ground motion amplitude A with timeτ:lgA=G-2.235lgτ,using the single scattering theory modified with epicentral distance,we obtain the curve family of corrected coda amplitude Ac(r,t),and w/2Qc values for each time interval of coda. From this,Qc(f,h) values, which correspond to each observational average frequency and sampling depth,are calculated.The results substantially agree with those observational Qc values in Yunnan,Beijing and central Asia.
基金sponsored by the National Natural Science Foundation of China(41874061)
文摘We monitored the amplitude changes of coda transmission waves around 500 kHz across the frictional interface of a simulated 1. 5-meter-long fault during normal stress holding test.We find that the amplitude of coda transmission waves increases with the logarithm of stationary contact time. Localized increase amounted to a level ranging from 4% to 16%along the fault is observed during the 1-hour experiment. We discuss that the frictional strength at mesoscopic scale,which is related to the amplitude of coda transmission waves,is responsible for the phenomenon. Combining the reported method with other complementary approaches will enhance the understanding of fault mechanism either at laboratory or on-site applications.
基金the State Key Program of National Natural Science of China under Grant No. 51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No. 51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No. shlhse-2010-C-03
文摘Based on the formulation of a multiple non-isotropic scattering process, a characteristic source time is introduced to define the initial impulse width of energy density at the source. An analytical expression of the initial intensity spectral density of a seismic wave is incorporated into the integral equation of seismic wave energy density. And, a recursive formula of Green's function is derived to obtain the higher order Green's function, which is included to describe the stronger non-isotropic scattering process. Then, the effect of the scattering pattern on the energy density envelope is investigated by the modified scattering theory. Significant differences arc found in the decay of the energy density envelopes with distances using different scattering patterns. The envelope synthesized by the forward dominated scattering pattern is larger than the results obtained by the isotropic and backward dominated scattering pattern. Different scattering patterns are also used to fit the observation data from the aftershocks of the 2008 Wenchuan earthquake. It is concluded that the envelopes synthesized by the forward scattering pattern can match the data better than the isotropic and backward dominated scattering cases, and a new interpretation of the coda wave is given. Finally, using the forward dominated scattering pattern, the envelope broadening of the observed data is reproduced.
文摘Based on the single scattering model of seismic coda waves, we have calculated the Q-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used.These earthquakes were recorded from January 1, 1989 to December 31,1990 at 20 stations. This paper shows the variations of the coda Q-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the coda Q-factors in these two years. The results indicate that coda Q-factor depends strongly on the lapse time and frequency. It is assumed that when Qc=Q0f″, for the three time windows of 15 -30 s, 30-60 s and 60-90 s, the average values of Q0 are 48, 115 and 217; and the average values of ηare 0.89, 0. 91 and 0. 74, respectively.
基金the National Natural Science Foundation of China(No.U1939204).
文摘Seismic coda wave is the tail portion of the earthquake record after main arrivals.Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scattering effect of the heterogeneities inside the earth.Here,we use records of seven large earthquakes at globally distributed seismic stations to examine the decay of long-period(100 s to 300 s)coda in the time window of 10,000 s to 140,000 s after the origin time and fit it with a statistical model.The geometric spreading effect in the estimated initial energy and a locationindependent equivalent attenuation coefficient indicate that the long-period coda energy is less affected by the heterogeneity-induced scattering effect than that of shorterperiod coda.The coda energy can reach the earth’s inner core and can be explained by a 1D earth model,making it more effective for constraining the global attenuation model.It also has the potential to determine the magnitudes of large earthquakes and to explore the interior of planetary bodies.
文摘emporal variation of coda Q-1 associated with the occurrence of Dahaituoshan earthquake (ML= 5. 4) and its variation with the seismicity in Beijing area were studied by using 90 local earthquakes from the China Digital Seismograph Network (CDSN). The results showed that there was a significant temporal change in coda Q-1 during the period from Jan. 1987 to Aug. 1991 and it was relative to the seismicity of this area. Coda Q-1 was determined for the lapse time window ranging from 10 to 60 s, frequency 1 to 16 Hz. By comparing the average values of Q-1 for different time periods, we found that in region near the mainshock area the coda Q-1 for earthquakes which occurred after the mainshock were higher than those earthquakes that occurred prior to the mainshock, while the coda Q-1 after the mainshock for the surrounding area were lower than before. We also found the temporal changes in η, the exponential in formula Q-1=Q0-1 (f/f0) -η, and Q0, the Q-factor at 1 Hz. Measurements of coda Q-1 from three components showed inconsistency in temporal variations for different frequencies.