Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flo...Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flowchart and generate code,but they do not check whether a given flowchart is correct or structural. For unstructured error ‘goto'statements will be generated randomly. We proposed three algorithms and some error recognition criteria to solve those problems. Structure recognition algorithm can recognize Selection,While/for and do-while structures. Error recognition algorithm incorporating criteria can check all the errors. At last,we develop a CG-SFC system,and compared with existing Rhapsody,it shows that the proposed algorithms are correct and effective.展开更多
A new method to design parity-check matrix based on Henon chaos model is presented. The designed parity-check matrix is with rather random behavior. Simulation results show that the proposed method makes an improvemen...A new method to design parity-check matrix based on Henon chaos model is presented. The designed parity-check matrix is with rather random behavior. Simulation results show that the proposed method makes an improvement in bit error rate (BER) performance by 0.4 dB compared with that of Luby for AWGN channel. The proposed method decreases the complexity of decoding significantly, and improves the error correcting performance of LDPC codes. It has been shown that Henon chaotic model is a powerful tool for construction of good LDPC codes, which make it possible to apply the LDPC code in real communication systems.展开更多
A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional densit...A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional density evolution and search the optimal degree profiles with fast-convergence differential evolution,so that it has a lower complexity and a faster convergence speed.Simulation resuits show that the irregular LDPC codes optimized by the presented algorithm can also perform better than Turbo codes at moderate block length even with less computation cost.展开更多
In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The...In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The receiver performs two iterative decoding loops. In the outer loop, the soft information is exchanged between the PDA detector and the LDPC decoder. In the inner loop, it is exchanged between variable node and check node decoders inside the LDPC decoder. On the light of the Extrinsic Information Transfer (EXIT) chart technique, an LDPC code degree profile optimization algorithm is developed for the doubly-iterative receiver. Simulation results show the doubly-receiver with optimized irregular LDPC code can have a better performance than the one with the regular one.展开更多
利用变量节点符号可靠度在迭代过程中的分布特征,提出了一种基于可靠度差值特征的自适应判决多元低密度奇偶校验(Low Density Parity Check, LDPC)译码算法。整个迭代过程划分为两个阶段,针对不同阶段节点可靠度的差值特征分别采用不同...利用变量节点符号可靠度在迭代过程中的分布特征,提出了一种基于可靠度差值特征的自适应判决多元低密度奇偶校验(Low Density Parity Check, LDPC)译码算法。整个迭代过程划分为两个阶段,针对不同阶段节点可靠度的差值特征分别采用不同的判决策略:前期阶段,采用传统的基于最大可靠度的判决策略;后期阶段,根据最大、次大可靠度之间的差值特征,设计自适应的码元符号判决策略。仿真结果表明,所提算法在相当的译码复杂度前提下,能获得0.15~0.4 dB的性能增益。同时,对于列重较小的LDPC码,具有更低的译码错误平层。展开更多
In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the ...In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.展开更多
军事卫星通信由于需满足信息实时性、传输速率高、通信容量大以及符合星间链路信道的时变特性等要求,通常采用高编码增益、高吞吐量的信道编码方案。低密度奇偶校验(Low-Density Parity-Check,LDPC)码由于具备接近Shannon极限的优异纠...军事卫星通信由于需满足信息实时性、传输速率高、通信容量大以及符合星间链路信道的时变特性等要求,通常采用高编码增益、高吞吐量的信道编码方案。低密度奇偶校验(Low-Density Parity-Check,LDPC)码由于具备接近Shannon极限的优异纠错性能和可并行计算的特性成为卫星通信主导信道编码标准之一。目前卫星通信接收机的译码器模块设计仍存在诸如无法实时在线判断迭代停止、系统吞吐量受限、大量判决电路影响核心译码电路的低功耗和实时性等问题。考虑上述问题,以因子图模型为基础,针对空间数据系统咨询委员会(Consultative Committee for Space Data Systems,CCSDS)标准深空通信码型,将校验节点归一化满足概率进化图案与LDPC译码器状态紧密耦合,给出可实时在线判断迭代停止的最优停止准则,实现高性能、低复杂度的停止准则译码算法设计。当优先考虑高吞吐量时,误码率(Bit Error Rate,BER)性能退化0.13 dB,中低信噪比平均迭代次数(Average Number of Iteration,ANI)降低50%以上;当优先考虑纠错性能时,BER性能仅退化0.02 dB,同时大幅降低ANI。该译码算法为高效低复杂度LDPC译码器设计提供有效解决方案。展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61402131)the China Postdoctoral Science Foundation(Grant No.2014M551245,2016T90293)+1 种基金the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z13105)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201651)
文摘Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flowchart and generate code,but they do not check whether a given flowchart is correct or structural. For unstructured error ‘goto'statements will be generated randomly. We proposed three algorithms and some error recognition criteria to solve those problems. Structure recognition algorithm can recognize Selection,While/for and do-while structures. Error recognition algorithm incorporating criteria can check all the errors. At last,we develop a CG-SFC system,and compared with existing Rhapsody,it shows that the proposed algorithms are correct and effective.
基金Supported by the National High Technology Research and Development Program of China (2001AA123053)
文摘A new method to design parity-check matrix based on Henon chaos model is presented. The designed parity-check matrix is with rather random behavior. Simulation results show that the proposed method makes an improvement in bit error rate (BER) performance by 0.4 dB compared with that of Luby for AWGN channel. The proposed method decreases the complexity of decoding significantly, and improves the error correcting performance of LDPC codes. It has been shown that Henon chaotic model is a powerful tool for construction of good LDPC codes, which make it possible to apply the LDPC code in real communication systems.
基金Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(No.J51801)Shanghai Second Polytechnic University Foundation,China(No.QD209008)Leading Academic Discipline Project of Shanghai Second Polytechnic University,China(No.XXKZD1302)
文摘A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional density evolution and search the optimal degree profiles with fast-convergence differential evolution,so that it has a lower complexity and a faster convergence speed.Simulation resuits show that the irregular LDPC codes optimized by the presented algorithm can also perform better than Turbo codes at moderate block length even with less computation cost.
基金Supported by the National Natural Science Foundation of China (No. 60772061)Science Foundation of Nanjing University of Posts and Telecommunications (No. NY207132)
文摘In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The receiver performs two iterative decoding loops. In the outer loop, the soft information is exchanged between the PDA detector and the LDPC decoder. In the inner loop, it is exchanged between variable node and check node decoders inside the LDPC decoder. On the light of the Extrinsic Information Transfer (EXIT) chart technique, an LDPC code degree profile optimization algorithm is developed for the doubly-iterative receiver. Simulation results show the doubly-receiver with optimized irregular LDPC code can have a better performance than the one with the regular one.
文摘In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.
文摘军事卫星通信由于需满足信息实时性、传输速率高、通信容量大以及符合星间链路信道的时变特性等要求,通常采用高编码增益、高吞吐量的信道编码方案。低密度奇偶校验(Low-Density Parity-Check,LDPC)码由于具备接近Shannon极限的优异纠错性能和可并行计算的特性成为卫星通信主导信道编码标准之一。目前卫星通信接收机的译码器模块设计仍存在诸如无法实时在线判断迭代停止、系统吞吐量受限、大量判决电路影响核心译码电路的低功耗和实时性等问题。考虑上述问题,以因子图模型为基础,针对空间数据系统咨询委员会(Consultative Committee for Space Data Systems,CCSDS)标准深空通信码型,将校验节点归一化满足概率进化图案与LDPC译码器状态紧密耦合,给出可实时在线判断迭代停止的最优停止准则,实现高性能、低复杂度的停止准则译码算法设计。当优先考虑高吞吐量时,误码率(Bit Error Rate,BER)性能退化0.13 dB,中低信噪比平均迭代次数(Average Number of Iteration,ANI)降低50%以上;当优先考虑纠错性能时,BER性能仅退化0.02 dB,同时大幅降低ANI。该译码算法为高效低复杂度LDPC译码器设计提供有效解决方案。