This paper proposes the first code-based quantum immune sequential aggregate signature(SAS)scheme and proves the security of the proposed scheme in the random oracle model.Aggregate signature(AS)schemes and sequential...This paper proposes the first code-based quantum immune sequential aggregate signature(SAS)scheme and proves the security of the proposed scheme in the random oracle model.Aggregate signature(AS)schemes and sequential aggregate signature schemes allow a group of potential signers to sign different messages respectively,and all the signatures of those users on those messages can be aggregated into a single signature such that the size of the aggregate signature is much smaller than the total size of all individual signatures.Because of the aggregation of many signatures into a single short signature,AS and SAS schemes can reduce bandwidth and save storage;moreover,when a SAS is verified,not only the valid but also the order in which each signer signed can be verified.AS and SAS schemes can be applied to traffic control,banking transaction and military applications.Most of the existing AS and SAS schemes are based either on pairing or Rivest-Shamir-Adleman(RSA),and hence,can be broken by Shor’s quantum algorithm for Integer Factoring Problem(IFP)and Discrete Logarithm Problem(DLP).There are no quantum algorithms to solve syndrome decoding problems.Hence,code-based cryptography is seen as one of the promising candidates for post-quantum cryptography.This paper shows how to construct quantum immune sequential aggregate signatures based on coding theory.Specifically,we construct our scheme with the first code based signature scheme proposed by Courtois,Finiasz and Sendrier(CFS).Compared to the CFS signature scheme without aggregation,the proposed sequential aggregate signature scheme can save about 90%storage when the number of signers is asymptotically large.展开更多
The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to secur...The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to securing such devices.As these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all.We have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in 2016.Therefore we propose a lightweight authentication protocol to provide proper access to such devices.We have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,etc.To define the architecture we used a three-layered model consisting of cloud,fog,and edge devices.We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage.We also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human intervention.We find that our protocol works the fastest when using ring learning with errors.We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool.In conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.展开更多
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This a...Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems.展开更多
With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th...With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.展开更多
Data security is a very important part of data transmission over insecure channels connected through high-speed networks. Due to COVID-19, the use of data transmission over insecure channels has increased in an expone...Data security is a very important part of data transmission over insecure channels connected through high-speed networks. Due to COVID-19, the use of data transmission over insecure channels has increased in an exponential manner. Hybrid cryptography provides a better solution than a single type of cryptographical technique. In this paper, nested levels of hybrid cryptographical techniques are investigated with the help of Deoxyribonucleic Acid (DNA) and Paillier cryptographical techniques. In the first level, information will be encrypted by DNA and at the second level, the ciphertext of DNA will be encrypted by Paillier cryptography. At the decryption time, firstly Paillier cryptography will be processed, and then DAN cryptography will be processed to get the original text. The proposed algorithm follows the concept of Last Encryption First Decryption (LEFD) at the time of decryption. The computed results are depicted in terms of tables and graphs.展开更多
Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approac...Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.展开更多
A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over fini...A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.展开更多
An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNA...An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.展开更多
Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-sp...Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept- resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.展开更多
In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual ...In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.展开更多
In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medica...In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests.This datum is sensitive,and hence security is a must in transforming the sensational contents.In this paper,an Evolutionary Algorithm,namely the Memetic Algorithm is used for encrypting the text messages.The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels.The reverse method of the Memetic Algorithm is implemented when extracting a hidden message from the encoded letter.To show its precision,equivalent to five RGB images and five Grayscale images are used to test the proposed algorithm.The results of the proposed algorithm were analyzed using statistical methods,and the proposed algorithm showed the importance of data transfer in healthcare systems in a stable environment.In the future,to embed the privacy-preserving of medical data,it can be extended with blockchain technology.展开更多
Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security thr...Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security threats, like data breaches, side-channel attacks, and virus and data authentication. Classical cryptographic algorithms, like the Rivest-Shamir-Adleman (RSA) algorithm, work well under the classical computers. But the technology is slowly shifting towards quantum computing, which has immense processing power and is more than enough to break the current cryptographic algorithms easily. So it is required that we have to design quantum cryptographic algorithms to prevent our systems from security breaches even before quantum computers come in the market for commercial uses. IoT will also be one of the disciplines, which needs to be secured to prevent any malicious activities. In this paper, we review the common security threats in IoT and the presently available solutions with their drawbacks. Then quantum cryptography is introduced with some of its variations. And finally, the analysis has been carried out in terms of the pros and cons of implementing quantum cryptography for IoT security.展开更多
A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selec...A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selection of random pixels from the original digital image instead of specific selection of pixels. The new method proposed does not require that the watermark pattern to be embedded in to the original digital image. Instead of that, verification information is generated which will be used to verify the ownership of the image. This leaves the marked image equal to the original image. The method is based on the relationship between randomly selected pixels and their 8-neighbors’ pixels. This relationship keeps the marked image coherent against diverse attacks even if the most significant bits of randomly selected pixels have been changed by attacker as we will see later in this paper. Experimental results show the proposed method can recover the watermark pattern from the marked image even if major changes are made to the original digital image.展开更多
Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS...Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.展开更多
A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multipli...A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.展开更多
Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modul...Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively展开更多
As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it direct...As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it directed a beam at a different receiver in Austria. These transmissions, delivered to sites 7600 km apart, were noteworthy because they marked the first time a satellite had relayed secret quantum keys for decrypting and viewing messages. With the keys, scientists in China and Austria were able to exchange and decipher encrypted images. And on 29 September 2017, the researchers used the system to set up an encrypted 75-minute video conference between members of the Chinese Academy of Sciences in Beijing and their counterparts at the Austrian Academy of Sciences in Vienna [1].展开更多
Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that...Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that uses the interference color of high-order retarder films and encrypts one secret image into two encrypted images. In other words, this method can only encrypt one image at a time. In this paper, we propose a new method that encrypts two color images using interference color.展开更多
In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or mor...In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.展开更多
Visual cryptography (VC) is one of the best techniques used to secure information. It uses the human vision to decrypt the encrypted images without any cryptographic computations. The basic concept of visual cryptogra...Visual cryptography (VC) is one of the best techniques used to secure information. It uses the human vision to decrypt the encrypted images without any cryptographic computations. The basic concept of visual cryptography is splitting the secret image into shares such that when the shares are stacked, the secret image is revealed. In this paper we proposed a method that is based on the concept of visual cryptography for color images and without any pixel expansion which requires less space. The proposed method is used to encrypt halftone color images by generating two shares, random and key shares which are the same size as the secret color image. The two shares are generated based on a private key. At the receiving side, the secret color image is revealed by stacking the two shares and exploiting the human vision system. In this paper, we produce an enhanced form of the proposed method by modifying the encryption technique used to generate the random and the key shares. Experimental results have shown that the proposed and the enhanced methods suggest an efficient way to encrypt a secret color image with better level of security, less storage space, less time of computation and with a better value of PSNR.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62072240by the Natural Science Foundation of Jiangsu Province under Grant BK20210330by the National Key Research and Development Program of China under Grant 2020YFB1804604.
文摘This paper proposes the first code-based quantum immune sequential aggregate signature(SAS)scheme and proves the security of the proposed scheme in the random oracle model.Aggregate signature(AS)schemes and sequential aggregate signature schemes allow a group of potential signers to sign different messages respectively,and all the signatures of those users on those messages can be aggregated into a single signature such that the size of the aggregate signature is much smaller than the total size of all individual signatures.Because of the aggregation of many signatures into a single short signature,AS and SAS schemes can reduce bandwidth and save storage;moreover,when a SAS is verified,not only the valid but also the order in which each signer signed can be verified.AS and SAS schemes can be applied to traffic control,banking transaction and military applications.Most of the existing AS and SAS schemes are based either on pairing or Rivest-Shamir-Adleman(RSA),and hence,can be broken by Shor’s quantum algorithm for Integer Factoring Problem(IFP)and Discrete Logarithm Problem(DLP).There are no quantum algorithms to solve syndrome decoding problems.Hence,code-based cryptography is seen as one of the promising candidates for post-quantum cryptography.This paper shows how to construct quantum immune sequential aggregate signatures based on coding theory.Specifically,we construct our scheme with the first code based signature scheme proposed by Courtois,Finiasz and Sendrier(CFS).Compared to the CFS signature scheme without aggregation,the proposed sequential aggregate signature scheme can save about 90%storage when the number of signers is asymptotically large.
文摘The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to securing such devices.As these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all.We have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in 2016.Therefore we propose a lightweight authentication protocol to provide proper access to such devices.We have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,etc.To define the architecture we used a three-layered model consisting of cloud,fog,and edge devices.We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage.We also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human intervention.We find that our protocol works the fastest when using ring learning with errors.We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool.In conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.
文摘Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems.
文摘With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.
文摘Data security is a very important part of data transmission over insecure channels connected through high-speed networks. Due to COVID-19, the use of data transmission over insecure channels has increased in an exponential manner. Hybrid cryptography provides a better solution than a single type of cryptographical technique. In this paper, nested levels of hybrid cryptographical techniques are investigated with the help of Deoxyribonucleic Acid (DNA) and Paillier cryptographical techniques. In the first level, information will be encrypted by DNA and at the second level, the ciphertext of DNA will be encrypted by Paillier cryptography. At the decryption time, firstly Paillier cryptography will be processed, and then DAN cryptography will be processed to get the original text. The proposed algorithm follows the concept of Last Encryption First Decryption (LEFD) at the time of decryption. The computed results are depicted in terms of tables and graphs.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2700600the National Natural Science Foundation of China under Grant No.62132013+5 种基金the Key Research and Development Programs of Shaanxi under Grant Nos.S2024-YF-YBGY-1540 and 2021ZDLGY06-03the Basic Strengthening Plan Program under Grant No.2023-JCJQ-JJ-0772the Key-Area Research and Development Program of Guangdong Province under Grant No.2021B0101400003Hong Kong RGC Research Impact Fund under Grant Nos.R5060-19 and R5034-18Areas of Excellence Scheme under Grant No.Ao E/E-601/22-RGeneral Research Fund under Grant Nos.152203/20E,152244/21E,152169/22E and152228/23E。
文摘Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.
基金Supported bythe Specialized Research Fundfor the Doctoral Programof Higher Education of China (20050183032) the Science Foundation Project of Jilin Province Education Office(2005180 ,2005181)
文摘A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.
基金supported by the National Natural Science Foundation of China(60373109)Ministry of Science and Technologyof China and the National Commercial Cryptography Application Technology Architecture and Application DemonstrationProject(2008BAA22B02).
文摘An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.
基金Project supported by the National Natural Science Foundation of China (Grant No 60872052)
文摘Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept- resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.
文摘In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.
文摘In the healthcare system,the Internet of Things(IoT)based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests.This datum is sensitive,and hence security is a must in transforming the sensational contents.In this paper,an Evolutionary Algorithm,namely the Memetic Algorithm is used for encrypting the text messages.The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels.The reverse method of the Memetic Algorithm is implemented when extracting a hidden message from the encoded letter.To show its precision,equivalent to five RGB images and five Grayscale images are used to test the proposed algorithm.The results of the proposed algorithm were analyzed using statistical methods,and the proposed algorithm showed the importance of data transfer in healthcare systems in a stable environment.In the future,to embed the privacy-preserving of medical data,it can be extended with blockchain technology.
文摘Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security threats, like data breaches, side-channel attacks, and virus and data authentication. Classical cryptographic algorithms, like the Rivest-Shamir-Adleman (RSA) algorithm, work well under the classical computers. But the technology is slowly shifting towards quantum computing, which has immense processing power and is more than enough to break the current cryptographic algorithms easily. So it is required that we have to design quantum cryptographic algorithms to prevent our systems from security breaches even before quantum computers come in the market for commercial uses. IoT will also be one of the disciplines, which needs to be secured to prevent any malicious activities. In this paper, we review the common security threats in IoT and the presently available solutions with their drawbacks. Then quantum cryptography is introduced with some of its variations. And finally, the analysis has been carried out in terms of the pros and cons of implementing quantum cryptography for IoT security.
文摘A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selection of random pixels from the original digital image instead of specific selection of pixels. The new method proposed does not require that the watermark pattern to be embedded in to the original digital image. Instead of that, verification information is generated which will be used to verify the ownership of the image. This leaves the marked image equal to the original image. The method is based on the relationship between randomly selected pixels and their 8-neighbors’ pixels. This relationship keeps the marked image coherent against diverse attacks even if the most significant bits of randomly selected pixels have been changed by attacker as we will see later in this paper. Experimental results show the proposed method can recover the watermark pattern from the marked image even if major changes are made to the original digital image.
基金supported in part by the Testbed@TWISC, National Science Council under the Grant No. 100-2219-E-006-001in part by National Natural Science Foundation of China under the Grant No. 60903210
文摘Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.
基金Supported by the National Natural Science Foun dation of China ( 69973034 ) and the National High TechnologyResearch and Development Program of China (2002AA141050)
文摘A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.
基金Supported by the National Natural Science Foun-dation of China (60373087)
文摘Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively
文摘As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it directed a beam at a different receiver in Austria. These transmissions, delivered to sites 7600 km apart, were noteworthy because they marked the first time a satellite had relayed secret quantum keys for decrypting and viewing messages. With the keys, scientists in China and Austria were able to exchange and decipher encrypted images. And on 29 September 2017, the researchers used the system to set up an encrypted 75-minute video conference between members of the Chinese Academy of Sciences in Beijing and their counterparts at the Austrian Academy of Sciences in Vienna [1].
文摘Visual cryptography is a method of encrypting an image into several encrypted images. Conventional visual cryptography can display only monochrome images. We previously proposed a color visual cryptography method that uses the interference color of high-order retarder films and encrypts one secret image into two encrypted images. In other words, this method can only encrypt one image at a time. In this paper, we propose a new method that encrypts two color images using interference color.
文摘In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.
文摘Visual cryptography (VC) is one of the best techniques used to secure information. It uses the human vision to decrypt the encrypted images without any cryptographic computations. The basic concept of visual cryptography is splitting the secret image into shares such that when the shares are stacked, the secret image is revealed. In this paper we proposed a method that is based on the concept of visual cryptography for color images and without any pixel expansion which requires less space. The proposed method is used to encrypt halftone color images by generating two shares, random and key shares which are the same size as the secret color image. The two shares are generated based on a private key. At the receiving side, the secret color image is revealed by stacking the two shares and exploiting the human vision system. In this paper, we produce an enhanced form of the proposed method by modifying the encryption technique used to generate the random and the key shares. Experimental results have shown that the proposed and the enhanced methods suggest an efficient way to encrypt a secret color image with better level of security, less storage space, less time of computation and with a better value of PSNR.