Cordierite honeycomb ceramics was treated with 1.5 M HNO3 , followed with 1.5 M NaOH at 93 ℃. The combination of acid treatment with alkali treatment significantly diminished the rebounding of coefficient of thermal ...Cordierite honeycomb ceramics was treated with 1.5 M HNO3 , followed with 1.5 M NaOH at 93 ℃. The combination of acid treatment with alkali treatment significantly diminished the rebounding of coefficient of thermal expansion (CTE) caused by heat treatment, a phenomenon observed in samples treated solely with acid. Inductively coupled plasma (ICP) analysis results reveal that the alkali treatment preferentially dissolved "free" SiO2 left in the acid-treated samples, which is considered to be a key factor responsible for the CTE rebounding.展开更多
Beryllium aluminum cyclosilicate, an ore of beryllium was reinforced in Aluminum matrix to fabricate Al-beryl composites using powder metallurgy. Effect of the content of beryllium aluminum cyclosilicate on microstruc...Beryllium aluminum cyclosilicate, an ore of beryllium was reinforced in Aluminum matrix to fabricate Al-beryl composites using powder metallurgy. Effect of the content of beryllium aluminum cyclosilicate on microstructural hardness and thermal expansion was studied. The coefficient of thermal expansion of Al-beryl composite was measured in the temperature range between 50oC to 360oC using dilatometer and was theoretically studied using thermo-elastic models, and these models were used to explain abnormalities observed experimentally. The hardness of Al-beryl metal matrix composites increased with the increase in beryl percentage. Vacuum sintering of Al-beryl metal matrix composites at 600oC inhibited excellent bonding between the matrix and the particulate increasing the strength of the composite. The result shows the CTE significantly increased with increasing temperature but decreased with increasing reinforcement. At higher temperatures, CTE of Al-beryl metal matrix composites with 5 wt%, 10 wt% and 15 wt% of beryllium aluminum cyclosilicate was 21 ppm/K, 18.2 ppm/K, and 16.8 ppm/K. The CTE values were found to be comparable with theoretical results. The turner model showed conformance with experimental results, was well suited to the experimental results.展开更多
A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and ...A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and Raman spectra. It is shown that ZrMnMo3012 adopts monoclinic structure with space group P21/a (No. 14) from 298 to 358K and transforms to orthorhombic with space group Pnma (No. 62) above 363K. The linear CTE obtained from the results of XRD refinement is -2.80 × 10-6 K-1 from 363 to 873 K. The CTE of the bulk cylinder ceramic measured by a thermal dilatometer is -4.7× 10-6 K-1 from 373 to 773K approximatively.展开更多
Effective manipulations of thermal expansion and conductivity are significant for improving operational performances of protective coatings,thermoelectric,and radiators.This work uncovers determinant mechanisms of the...Effective manipulations of thermal expansion and conductivity are significant for improving operational performances of protective coatings,thermoelectric,and radiators.This work uncovers determinant mechanisms of the thermal expansion and conductivity of symbiotic ScTaO_(4)/SmTaO_(4) composites as thermal/environmental barrier coatings(T/EBCs),and we consider the effects of interface stress and thermal resistance.The weak bonding and interface stress among composite grains manipulate coefficient of thermal expansion(CTE)stretching from 6.4×10^(−6) to 10.7×10^(−6) K^(−1) at 1300℃,which gets close to that of substrates in T/EBC systems.The multiscale effects,including phonon scattering at the interface,mitigation of the phonon speed(vp),and lattice point defects,synergistically depress phonon thermal transports,and we estimate the proportions of different parts.The interface thermal resistance(R)reduces the thermal conductivity(k)by depressing phonon speed and scattering phonons because of different acoustic properties and weak bonding between symbiotic ScTaO_(4) and SmTaO_(4) ceramics in the composites.This study proves that CTE of tantalates can be artificially regulated to match those of different substrates to expand their applications,and the uncovered multiscale effects can be used to manipulate thermal transports of various materials.展开更多
High-entropy pyrosilicate element selection is relatively blind, and the thermal expansion coefficient (CTE) of traditional β-type pyrosilicate is not adjustable, making it difficult to meet the requirements of vario...High-entropy pyrosilicate element selection is relatively blind, and the thermal expansion coefficient (CTE) of traditional β-type pyrosilicate is not adjustable, making it difficult to meet the requirements of various types of ceramic matrix composites (CMCs). The following study aimed to develop a universal rule for high-entropy pyrosilicate element selection and to achieve directional control of the thermal expansion coefficient of high-entropy pyrosilicate. The current study investigates a high-entropy design method for obtaining pyrosilicates with stable β-phase and γ-phase by introducing various rare-earth (RE) cations. The solid-phase method was used to create 12 different types of high-entropy pyrosilicates with 4–6 components. The high-entropy pyrosilicates gradually transformed from β-phase to γ-phase with an increase in the average radius of RE^(3+) ions ( r¯(RE^(3+))). The nine pyrosilicates with a small r¯(RE^(3+)) preserve β-phase or γ-phase stability at room temperature to the maximum of 1400 ℃. The intrinsic relationship between the thermal expansion coefficient, phase structure, and RE–O bond length has also been found. This study provides the theoretical background for designing high-entropy pyrosilicates from the perspective of r¯(RE^(3+)). The theoretical guidance makes it easier to synthesize high-entropy pyrosilicates with stable β-phase or γ-phase for the use in environmental barrier coatings (EBCs). The thermal expansion coefficient of γ-type high-entropy pyrosilicate can be altered through component design to match various types of CMCs.展开更多
Mg-Gd-Y-Zr alloy castings are widely used in the aerospace field owing to their high strength and excellent creep resistance.The castability of these alloys is also an important consideration for engineering applicati...Mg-Gd-Y-Zr alloy castings are widely used in the aerospace field owing to their high strength and excellent creep resistance.The castability of these alloys is also an important consideration for engineering application.Thus,the hot tearing susceptibilities(HTSs)of Mg-10Gd-1Y-1Zn-0.5Zr(VW91)alloy and Mg-10Gd-2Y-1Zn-0.5Zr(VW92)alloy are investigated with a constrained rod casting(CRC)mold.The microstructures and fracture surface are characterized by optical microscope and scanning electron microscope.The results unveil that the HTS of VW92alloy is lower than that of VW91 alloy.The microstructures indicate that obvious tears can be observed in VW91 alloy,while the tears in VW92 alloy are tiny.The tear feeding and healing by eutectic are also observed in VW91 and VW92alloys.Therefore,the lower hot tearing susceptibility of VW92 alloy is mainly attributed to the high amount of eutectic which feeds and heals tears.Besides,the effects of the coefficient of thermal expansion(CTE)and the fluidity of VW91 and VW92 alloys on their HTSs are discussed.展开更多
In this research,a novel method for regulating components in RE_(2)SiO_(5)/RE_(2)Si_(2)O_(7)multiphase silicates was developed,combining the benefits of a suitable thermal expansion coefficient(CTE)and outstanding cor...In this research,a novel method for regulating components in RE_(2)SiO_(5)/RE_(2)Si_(2)O_(7)multiphase silicates was developed,combining the benefits of a suitable thermal expansion coefficient(CTE)and outstanding corrosion resistance against calcium–magnesium–alumino–silicate(CMAS).This approach enhanced the overall thermophysical properties.Additionally,the results from the CMAS corrosion resistance test indicated that(Lu_(1/3)Yb_(1/3)Tm_(1/3))_(2)SiO_(5)/(Lu_(1/3)Yb_(1/3)Tm_(1/3))_(2)Si_(2)O_(7)and(Lu_(1/4)Yb_(1/4)Tm_(1/4)Er_(1/4))_(2)SiO_(5)/(Lu_(1/4)Yb_(1/4)Tm_(1/4)Er_(1/4))_(2)Si_(2)O_(7)exhibited exceptional resistance to CMAS penetration,even at temperatures up to 1500℃.To comprehend the corrosion mechanism of CMAS on these silicates,we introduced a reaction–diffusion model,which involved observing the changes in the interface between the corrosion product layer and the silicate block.This was achieved using electron backscatter diffraction(EBSD).These findings lay a theoretical basis for selecting rare earth elements in RE_(2)SiO_(5)/RE_(2)Si_(2)O_(7)multiphase silicates based on the radii of different rare earth cations.展开更多
基金Funded bythe International Cooperation Project of Jiangsu Prov-ince(No.BZ2001043)
文摘Cordierite honeycomb ceramics was treated with 1.5 M HNO3 , followed with 1.5 M NaOH at 93 ℃. The combination of acid treatment with alkali treatment significantly diminished the rebounding of coefficient of thermal expansion (CTE) caused by heat treatment, a phenomenon observed in samples treated solely with acid. Inductively coupled plasma (ICP) analysis results reveal that the alkali treatment preferentially dissolved "free" SiO2 left in the acid-treated samples, which is considered to be a key factor responsible for the CTE rebounding.
文摘Beryllium aluminum cyclosilicate, an ore of beryllium was reinforced in Aluminum matrix to fabricate Al-beryl composites using powder metallurgy. Effect of the content of beryllium aluminum cyclosilicate on microstructural hardness and thermal expansion was studied. The coefficient of thermal expansion of Al-beryl composite was measured in the temperature range between 50oC to 360oC using dilatometer and was theoretically studied using thermo-elastic models, and these models were used to explain abnormalities observed experimentally. The hardness of Al-beryl metal matrix composites increased with the increase in beryl percentage. Vacuum sintering of Al-beryl metal matrix composites at 600oC inhibited excellent bonding between the matrix and the particulate increasing the strength of the composite. The result shows the CTE significantly increased with increasing temperature but decreased with increasing reinforcement. At higher temperatures, CTE of Al-beryl metal matrix composites with 5 wt%, 10 wt% and 15 wt% of beryllium aluminum cyclosilicate was 21 ppm/K, 18.2 ppm/K, and 16.8 ppm/K. The CTE values were found to be comparable with theoretical results. The turner model showed conformance with experimental results, was well suited to the experimental results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574276,51503185 and 51302249the Doctoral Fund of the Ministry of Education of China under Grant No 20114101110003
文摘A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and Raman spectra. It is shown that ZrMnMo3012 adopts monoclinic structure with space group P21/a (No. 14) from 298 to 358K and transforms to orthorhombic with space group Pnma (No. 62) above 363K. The linear CTE obtained from the results of XRD refinement is -2.80 × 10-6 K-1 from 363 to 873 K. The CTE of the bulk cylinder ceramic measured by a thermal dilatometer is -4.7× 10-6 K-1 from 373 to 773K approximatively.
基金Thanks for the supports from the National Natural Science Foundation of China(No.91960103)National Key Research and Development Program of China(No.2022YFB3708600)+1 种基金the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(No.202102AB080019-1)the Top Innovative Talents of Graduate Students of Kunming University of Science and Technology。
文摘Effective manipulations of thermal expansion and conductivity are significant for improving operational performances of protective coatings,thermoelectric,and radiators.This work uncovers determinant mechanisms of the thermal expansion and conductivity of symbiotic ScTaO_(4)/SmTaO_(4) composites as thermal/environmental barrier coatings(T/EBCs),and we consider the effects of interface stress and thermal resistance.The weak bonding and interface stress among composite grains manipulate coefficient of thermal expansion(CTE)stretching from 6.4×10^(−6) to 10.7×10^(−6) K^(−1) at 1300℃,which gets close to that of substrates in T/EBC systems.The multiscale effects,including phonon scattering at the interface,mitigation of the phonon speed(vp),and lattice point defects,synergistically depress phonon thermal transports,and we estimate the proportions of different parts.The interface thermal resistance(R)reduces the thermal conductivity(k)by depressing phonon speed and scattering phonons because of different acoustic properties and weak bonding between symbiotic ScTaO_(4) and SmTaO_(4) ceramics in the composites.This study proves that CTE of tantalates can be artificially regulated to match those of different substrates to expand their applications,and the uncovered multiscale effects can be used to manipulate thermal transports of various materials.
基金supported by the Instrument and Equipment Development,Chinese Academy of Sciences(YJKYYQ20210030)Shanghai Science and Technology Innovation Action Plan(21142201100).
文摘High-entropy pyrosilicate element selection is relatively blind, and the thermal expansion coefficient (CTE) of traditional β-type pyrosilicate is not adjustable, making it difficult to meet the requirements of various types of ceramic matrix composites (CMCs). The following study aimed to develop a universal rule for high-entropy pyrosilicate element selection and to achieve directional control of the thermal expansion coefficient of high-entropy pyrosilicate. The current study investigates a high-entropy design method for obtaining pyrosilicates with stable β-phase and γ-phase by introducing various rare-earth (RE) cations. The solid-phase method was used to create 12 different types of high-entropy pyrosilicates with 4–6 components. The high-entropy pyrosilicates gradually transformed from β-phase to γ-phase with an increase in the average radius of RE^(3+) ions ( r¯(RE^(3+))). The nine pyrosilicates with a small r¯(RE^(3+)) preserve β-phase or γ-phase stability at room temperature to the maximum of 1400 ℃. The intrinsic relationship between the thermal expansion coefficient, phase structure, and RE–O bond length has also been found. This study provides the theoretical background for designing high-entropy pyrosilicates from the perspective of r¯(RE^(3+)). The theoretical guidance makes it easier to synthesize high-entropy pyrosilicates with stable β-phase or γ-phase for the use in environmental barrier coatings (EBCs). The thermal expansion coefficient of γ-type high-entropy pyrosilicate can be altered through component design to match various types of CMCs.
基金the Key Research and Development Program of Zhejiang of China(No.2021C01086)the National Natural Science Foundation of China(No.52071036)the Interdisciplinary and Team Building Program of Central Universities,China(No.2020CDJQY-A002,2021CDJCGJ009)。
文摘Mg-Gd-Y-Zr alloy castings are widely used in the aerospace field owing to their high strength and excellent creep resistance.The castability of these alloys is also an important consideration for engineering application.Thus,the hot tearing susceptibilities(HTSs)of Mg-10Gd-1Y-1Zn-0.5Zr(VW91)alloy and Mg-10Gd-2Y-1Zn-0.5Zr(VW92)alloy are investigated with a constrained rod casting(CRC)mold.The microstructures and fracture surface are characterized by optical microscope and scanning electron microscope.The results unveil that the HTS of VW92alloy is lower than that of VW91 alloy.The microstructures indicate that obvious tears can be observed in VW91 alloy,while the tears in VW92 alloy are tiny.The tear feeding and healing by eutectic are also observed in VW91 and VW92alloys.Therefore,the lower hot tearing susceptibility of VW92 alloy is mainly attributed to the high amount of eutectic which feeds and heals tears.Besides,the effects of the coefficient of thermal expansion(CTE)and the fluidity of VW91 and VW92 alloys on their HTSs are discussed.
基金financially supported by the Major Special Projects in Anhui Province,China(No.202003c08020005)the Key Projects in Hunan Province,China(No.2020GK2045)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2021RC4036)Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX20211079)。
基金supported by the National Key R&D Program of China(No.2023YFF0719800).
文摘In this research,a novel method for regulating components in RE_(2)SiO_(5)/RE_(2)Si_(2)O_(7)multiphase silicates was developed,combining the benefits of a suitable thermal expansion coefficient(CTE)and outstanding corrosion resistance against calcium–magnesium–alumino–silicate(CMAS).This approach enhanced the overall thermophysical properties.Additionally,the results from the CMAS corrosion resistance test indicated that(Lu_(1/3)Yb_(1/3)Tm_(1/3))_(2)SiO_(5)/(Lu_(1/3)Yb_(1/3)Tm_(1/3))_(2)Si_(2)O_(7)and(Lu_(1/4)Yb_(1/4)Tm_(1/4)Er_(1/4))_(2)SiO_(5)/(Lu_(1/4)Yb_(1/4)Tm_(1/4)Er_(1/4))_(2)Si_(2)O_(7)exhibited exceptional resistance to CMAS penetration,even at temperatures up to 1500℃.To comprehend the corrosion mechanism of CMAS on these silicates,we introduced a reaction–diffusion model,which involved observing the changes in the interface between the corrosion product layer and the silicate block.This was achieved using electron backscatter diffraction(EBSD).These findings lay a theoretical basis for selecting rare earth elements in RE_(2)SiO_(5)/RE_(2)Si_(2)O_(7)multiphase silicates based on the radii of different rare earth cations.