期刊文献+
共找到290篇文章
< 1 2 15 >
每页显示 20 50 100
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
1
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis Simulated annealing genetic algorithm fuzzy cluster means
下载PDF
Surrogate model-assisted interactive genetic algorithms with individual’s fuzzy and stochastic fitness 被引量:1
2
作者 Xiaoyan SUN, Dunwei GONG (School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China) 《控制理论与应用(英文版)》 EI 2010年第2期189-199,共11页
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi... We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency. 展开更多
关键词 Interactive genetic algorithms User fatigue Surrogate model Directed fuzzy graph fuzzy entropy
下载PDF
A Fuzzy-based Adaptive Genetic Algorithm and Its Case Study in Chemical Engineering 被引量:5
3
作者 杨传鑫 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期299-307,共9页
Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined... Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained. 展开更多
关键词 fuzzy logic controller genetic algorithm artificial immune system reaction kinetics model
下载PDF
An Approach to Unsupervised Character Classification Based on Similarity Measure in Fuzzy Model
4
作者 卢达 钱忆平 +1 位作者 谢铭培 浦炜 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期370-376,共7页
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ... This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre... 展开更多
关键词 fuzzy model weighted fuzzy similarity measure unsupervised character classification matching algorithm classification hierarchy
下载PDF
A Short-Term Traffic Flow Prediction ModelBased on Quantum Genetic Algorithm andFuzzy RBF Neural Networks
5
作者 Kun Zhang 《计算机科学与技术汇刊(中英文版)》 2016年第1期24-39,共16页
关键词 神经网络 流动模拟 基因算法 RBF 交通 预言 短期 ARIMA
下载PDF
Genetic Feature Selection for Texture Classification 被引量:6
6
作者 PANLi ZHENGHong +1 位作者 ZHANGZuxun ZHANGJianqing 《Geo-Spatial Information Science》 2004年第3期162-166,173,共6页
This paper presents a novel approach to feature subset selection using genetic algorithms. This approach has the ability to accommodate multiple criteria such as the accuracy and cost of classification into the proces... This paper presents a novel approach to feature subset selection using genetic algorithms. This approach has the ability to accommodate multiple criteria such as the accuracy and cost of classification into the process of feature selection and finds the effective feature subset for texture classification. On the basis of the effective feature subset selected, a method is described to extract the objects which are higher than their surroundings, such as trees or forest, in the color aerial images. The methodology presented in this paper is illustrated by its application to the problem of trees extraction from aerial images. 展开更多
关键词 genetic algorithms feature selection texture classification fuzzy c-mean
下载PDF
Fuzzy ARTMAP neural network for seafloor classification from multibeam sonar data 被引量:2
7
作者 周兴华 Chen Yongqi +1 位作者 Nick Emerson Du Dewen 《High Technology Letters》 EI CAS 2006年第2期219-224,共6页
This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed ... This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed for seafloor classification of multibeam sonar data. An evolutionary strategy was used to generate new training samples near the cluster boundaries of the neural network, therefore the weights can be revised and refined by supervised learning. The proposed method resolves the training problem for Fuzzy ARTMAP neural networks, which are applied to seafloor classification of multibeam sonar data when there are less than adequate ground-troth samples. The results were synthetically analyzed in comparison with the standard Fuzzy ARTMAP network and a conventional Bayesian classifier. The conclusion can be drawn that Fuzzy ARTMAP neural networks combining with GA algorithms can be alternative powerful tools for seafloor classification of multibeam sonar data. 展开更多
关键词 fuzzy ARTMAP neural network genetic algorithms seafloor classification multibeam sonar
下载PDF
Technical-economical optimization of horizontal axis wind turbines by means of the genetic algorithm
8
作者 Amir Jafary Moghaddam Abdollah Khalesi Doost 《Natural Science》 2013年第12期1-8,共8页
Wind turbine design is a trade-off between its potentially generated energy and manufacturing cost represented by the area of turbine surface in this research, and both factors are highly influenced by a number of des... Wind turbine design is a trade-off between its potentially generated energy and manufacturing cost represented by the area of turbine surface in this research, and both factors are highly influenced by a number of design parameters. In this research, first, a weighted sum of these factors, with a negative weight for power, is assumed as the performance function to be minimized. Then, blade element modeling was performed for class NACA turbines to estimate the generated power based on the effective wind velocity in the area. As a novelty, a new algorithm based on fuzzy logic was proposed to determine the effective wind velocity by using the history of wind velocity in the area. The wind velocity, therefore, the generated power by a wind turbine, is largely dependent on its operation area. In the end, the genetic algorithm with decimal numeric genes was employed to determine the optimal design parameters of the turbine based on the recorded data. This study resulted in a computer program which integrated calculations of fluid dynamics into the genetic algorithm to optimally determine an appropriate turbine (its geometric parameters). The implementation of the proposed method on two different regions ended up with the design of the blade NACA5413 for Manjil and the blade NACA4314 for Semnan, both in Iran. 展开更多
关键词 HORIZONTAL WIND Turbines genetic algorithm Element modeling of the BLADE fuzzy SETS OPTIMIZATION Iran
下载PDF
Uncertain Dispatching Decision and Genetic Algorithms for Railyards Operations
9
作者 HE Shi\|wei,\ SONG Rui,\ HU An\|zhou School of Tcaffic and Transportation, Northern Jiaotong University Beijing 100044, China 《Systems Science and Systems Engineering》 CSCD 2000年第2期149-158,共10页
In this paper, a fuzzy dispatching model has been developed and genetic algorithms have been used for considering the corrdination among uncertain decisions in railyards dispatching plan. The objective considered here... In this paper, a fuzzy dispatching model has been developed and genetic algorithms have been used for considering the corrdination among uncertain decisions in railyards dispatching plan. The objective considered here is to maximize the average grade of satisfaction including the yards output and ontime service of the plan. Based on the analysis of the fuzzy scheduled model for the problem, the chromosome and fitness function of genetic algorithms are proposed. The genetic operators are designed and the genetic algorithms are given. Experimental results show that the genetic algorithms and fuzziness approach could be a promising way for railyards dispatching problem. 展开更多
关键词 railyards uncertain decision fuzzy dispatching model genetic algorithms
原文传递
Classification evolution algorithm based on cloud model
10
作者 LI He-song ZHANG Guang-wei +1 位作者 LI De-yi LI Xiang-mei 《通讯和计算机(中英文版)》 2009年第10期8-16,共9页
关键词 数据分类 进化算法 云模型 知识发现 进化计算 分类问题 传统方法 统计分类
下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
11
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量机回归(SVR) 遗传算法
下载PDF
基于遗传算法优化C-LSTM模型的心律失常分类方法
12
作者 王巍 丁辉 +3 位作者 夏旭 吴浩 张迎 郭家成 《中国医学物理学杂志》 CSCD 2024年第2期233-240,共8页
结合遗传算法全局寻优的特点提出一种GC-LSTM模型,该模型通过特定遗传策略的遗传算法自动迭代搜寻C-LSTM模型最佳超参数配置。利用遗传迭代结果配置模型,并按照医疗仪器促进协会制定分类标准在MIT-BIH心律失常数据库上进行验证。经过测... 结合遗传算法全局寻优的特点提出一种GC-LSTM模型,该模型通过特定遗传策略的遗传算法自动迭代搜寻C-LSTM模型最佳超参数配置。利用遗传迭代结果配置模型,并按照医疗仪器促进协会制定分类标准在MIT-BIH心律失常数据库上进行验证。经过测试,本文提出的GC-LSTM模型在分类准确率(99.37%)、灵敏度(95.62%)、精确度(95.17%)、F1值(95.39%)上相较于手动搭建模型均有所提升,且与现有主流方法相比亦具备一定优势。实验结果表明该方法在避免大量实验调参的同时取得较好的分类性能。 展开更多
关键词 心律失常分类 遗传算法 GC-LSTM模型 超参数
下载PDF
基于改进遗传算法和DBSCAN聚类的学习数据深度挖掘方法 被引量:2
13
作者 孟涛 王晓勇 胡胜利 《齐齐哈尔大学学报(自然科学版)》 2024年第1期45-50,55,共7页
为了从在线学习大数据中提取有用信息,实现自适应特征提取和聚类,提出了基于改进模糊遗传算法和DBSCAN聚类的细粒度学习数据挖掘方法。通过在信息管理平台中应用数据挖掘技术,将学习表现评估转换为文本分类问题,基于动态数据分析细粒度... 为了从在线学习大数据中提取有用信息,实现自适应特征提取和聚类,提出了基于改进模糊遗传算法和DBSCAN聚类的细粒度学习数据挖掘方法。通过在信息管理平台中应用数据挖掘技术,将学习表现评估转换为文本分类问题,基于动态数据分析细粒度的知识获取结果。所提改进的遗传算法自动提取出文本中的最优特征集,利用模糊规则关联测试内容与知识点。最后,利用基于密度的聚类算法得到每个知识点的个体和整体测试结果。实验结果表明,所提方法能够自动处理大量数据,全面准确地分析测试结果中不同知识点的掌握程度,有助于信息管理平台数据的二次开发和深入挖掘。 展开更多
关键词 大数据 数据挖掘 遗传算法 模糊规则 文本分类
下载PDF
数据与知识双驱动的备件需求模糊预测模型
14
作者 王小巍 陈砚桥 +1 位作者 金家善 魏曙寰 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期205-214,共10页
针对知识驱动型需求预测模型所需的专家知识稀缺、数据驱动型需求预测模型可解释性不足的问题,提出了数据与知识双驱动的备件需求模糊预测模型。该模型基于模糊聚类算法将数值型数据聚类为结构简单、可解释性强的规则库,运用模糊逻辑将... 针对知识驱动型需求预测模型所需的专家知识稀缺、数据驱动型需求预测模型可解释性不足的问题,提出了数据与知识双驱动的备件需求模糊预测模型。该模型基于模糊聚类算法将数值型数据聚类为结构简单、可解释性强的规则库,运用模糊逻辑将领域专家知识表示为Mamdani型规则库。在此基础上,引入了一种新型智能计算理论——模糊网络理论对两类规则库进行合并运算,形成初始预测模型。采用遗传算法优化模型规则库的模糊集参数来提高模型预测准确性。通过与模糊聚类算法进行对比,提出的模型在可解释性以及准确性指标上均具有优势。 展开更多
关键词 预测模型 备件 模糊网络 遗传算法
下载PDF
基于FDD模型的掘进机截割减速器油液状态评估研究
15
作者 秦彦凯 尚超 +3 位作者 权钰云 关重阳 刘国鹏 石冠男 《煤炭工程》 北大核心 2024年第5期152-159,共8页
掘进机截割减速器的可靠运行与润滑油状态息息相关,为合理评估油液状态,依据粘度、水分、颗粒数三种油液指标,提出了一种基于模糊深度学习模型(FDD)的油液状态评估方法。首先,按照单个指标将油液状态划分为四个等级,根据模糊综合评估法... 掘进机截割减速器的可靠运行与润滑油状态息息相关,为合理评估油液状态,依据粘度、水分、颗粒数三种油液指标,提出了一种基于模糊深度学习模型(FDD)的油液状态评估方法。首先,按照单个指标将油液状态划分为四个等级,根据模糊综合评估法进行模糊评估;其次,将各指标数据进行归一化处理,作为深度神经网络的输入,再运用ReLU激活函数对网络进行激活,得到一个过拟合的神经网络;然后利用Dropout层特性,降低网络拟合程度,同时使用遗传算法对模型中的超参进行优化。最后,使用仿真数据对模型进行训练,并利用实际数据对模型进行验证。结果表明,该方法对油液状态的平均预测精度达到97%,数据损失0.0018,解决了由于多指标信息不一致导致油液状态表征困难及数据较少情况下神经网络训练困难的问题。 展开更多
关键词 油液监测 截割减速器 FDD模型 模糊评估 遗传算法 深度学习
下载PDF
基于遗传算法-模糊PID的双喷头FDM型3D打印机温度控制方法
16
作者 冀炳晖 茅健 钱波 《工程设计学报》 CSCD 北大核心 2024年第2期151-159,共9页
熔融沉积成形(fused deposition modeling,FDM)3D打印需要将打印喷头加热至材料所需温度后才能开始打印。由于单喷头FDM型3D打印机的打印效率较低,以及其加热系统的滞后性较大且稳定性差,使得整个成形过程既耗时又浪费资源,且成形件的... 熔融沉积成形(fused deposition modeling,FDM)3D打印需要将打印喷头加热至材料所需温度后才能开始打印。由于单喷头FDM型3D打印机的打印效率较低,以及其加热系统的滞后性较大且稳定性差,使得整个成形过程既耗时又浪费资源,且成形件的质量不高。为解决上述问题,结合打印材料物理性质和化学性质的差异性,提出了一种基于遗传算法-模糊PID(proportional-integral-derivative,比例-积分-微分)的温度控制方法,以实现对双喷头FDM型3D打印机加热方法的控制,并建立温度控制系统的MATLAB/Simulink仿真模型,以验证所提出的控制方法的可靠性。仿真和实验结果表明,与传统PID控制、模糊PID控制相比,遗传算法-模糊PID控制的响应时间缩短了36.03%和32.45%,调节时间缩短了28.06%和20.99%,具有响应速度快、调节时间短、超调量小和控制效果稳定等优势。研究结果可为复合材料的双喷头FDM 3D打印提供参考。 展开更多
关键词 熔融沉积成形 双喷头 温度控制 遗传算法 模糊PID
下载PDF
基于IGA-FL融合算法的有色金属选矿精矿品位优化研究
17
作者 张健仁 周新宇 +1 位作者 廖辉宝 刘欣宇 《黄金》 CAS 2024年第11期99-103,共5页
为优化有色金属选矿过程的精矿品位,将模糊逻辑算法与免疫遗传算法进行融合,设计出了一种IGA-FL融合算法,并基于该融合算法构建有色金属选矿检测模型,对有色金属选矿的精矿品位进行检测和优化。对比试验结果显示,IGA-FL融合算法的数据... 为优化有色金属选矿过程的精矿品位,将模糊逻辑算法与免疫遗传算法进行融合,设计出了一种IGA-FL融合算法,并基于该融合算法构建有色金属选矿检测模型,对有色金属选矿的精矿品位进行检测和优化。对比试验结果显示,IGA-FL融合算法的数据查全率为99.7%,计算速度为16.7 bps;基于该算法的检测模型平均检测准确率为97.3%,检测耗时1.8 s。应用基于IGA-FL融合算法的检测模型后,有色金属选矿精矿品位达到70.5%,说明该检测模型能够对有色金属选矿的精矿品位进行优化。 展开更多
关键词 有色金属选矿 精矿品位 模糊逻辑算法 免疫遗传算法 融合算法 检测模型
下载PDF
改进决策树算法的大数据分类优化方法
18
作者 唐灵逸 唐怡雯 李蓓蓓 《吉林大学学报(信息科学版)》 CAS 2024年第5期959-965,共7页
针对当前海量数据的结构和特征较为复杂,对其分类时很难确保较高的精准度与效率的问题,提出了改进决策树算法的大数据分类优化方法。构建模糊决策函数检测大数据的序列特征,并将其输入决策树模型中挖掘和训练规则;利用灰狼优化算法改进... 针对当前海量数据的结构和特征较为复杂,对其分类时很难确保较高的精准度与效率的问题,提出了改进决策树算法的大数据分类优化方法。构建模糊决策函数检测大数据的序列特征,并将其输入决策树模型中挖掘和训练规则;利用灰狼优化算法改进决策树模型,使用改进后模型对大数据简化、粗略分类,再建立分类器准确度目标函数,实现对大数据的精准分类。实验结果表明,所提方法取得分类结果准确度最高、假正例率最低,保证了算法整体具有较高的吞吐量,提高了算法分类效率。 展开更多
关键词 决策树模型 灰狼优化算法 目标函数 大数据分类 模糊决策函数
下载PDF
考虑负外部性的动力电池可持续逆向物流网络优化
19
作者 范志强 罗一帆 李姗姗 《河南理工大学学报(社会科学版)》 2024年第6期8-18,共11页
随着新能源汽车动力电池退役潮的到来,相关逆向物流设施的规模也在不断扩张,动力电池回收拆解中心及其附属活动带来的环境及社会负外部性也日益突出,亟须从可持续角度对退役动力电池逆向物流网络进行优化。考虑回收数量和再循环比例的... 随着新能源汽车动力电池退役潮的到来,相关逆向物流设施的规模也在不断扩张,动力电池回收拆解中心及其附属活动带来的环境及社会负外部性也日益突出,亟须从可持续角度对退役动力电池逆向物流网络进行优化。考虑回收数量和再循环比例的不确定性,引入风险接受度函数(risk acceptance function,RAF),本文以成本最小化、碳排放量最小化和风险接受度最大化为目标构建多目标混合整数规划模型,通过大规模算例验证了模型与算法的有效性,并对参数进行敏感性分析。与单目标优化模型相比,多目标决策模型能有效促进经济、环境与社会三者协调发展;回收量置信水平的增大可引起成本、碳排放量的持续增加以及风险接受度的持续降低;再循环比例及其置信水平的增大可使得成本与碳排放量呈递减变化,以及风险接受度呈递增变化。 展开更多
关键词 逆向物流网络 三角模糊数 风险接受度函数 多目标混合整数规划模型 改进遗传算法
下载PDF
Parallel Machine Scheduling Models with Fuzzy Parameters and Precedence Constraints: A Credibility Approach
20
作者 侯福均 吴祈宗 《Journal of Beijing Institute of Technology》 EI CAS 2007年第2期231-236,共6页
A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assum... A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure. 展开更多
关键词 parallel machine scheduling programming model possibility measure credibility measure fuzzy number genetic algorithm
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部