In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other...This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.展开更多
In a global dynamic analysis,the coexisting attractors and their basins are the main tools to understand the system behavior and safety.However,both basins and attractors can be drastically influenced by uncertainties...In a global dynamic analysis,the coexisting attractors and their basins are the main tools to understand the system behavior and safety.However,both basins and attractors can be drastically influenced by uncertainties.The aim of this work is to illustrate a methodology for the global dynamic analysis of nondeterministic dynamical systems with competing attractors.Accordingly,analytical and numerical tools for calculation of nondeterministic global structures,namely attractors and basins,are proposed.First,based on the definition of the Perron-Frobenius,Koopman and Foias linear operators,a global dynamic description through phase-space operators is presented for both deterministic and nondeterministic cases.In this context,the stochastic basins of attraction and attractors’distributions replace the usual basin and attractor concepts.Then,numerical implementation of these concepts is accomplished via an adaptative phase-space discretization strategy based on the classical Ulam method.Sample results of the methodology are presented for a canonical dynamical system.展开更多
A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activitie...A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activities on the thermodynamic properties of slags.Using this model,iso-activity contours were obtained for oxide components CaO,SiO_(2) and Al2O3 in this system at temperatures of 1,873 K and 1,773 K.When compared with the IMCT model,it is found that the predicted activities of oxide components in the CaO-SiO_(2)-Al_(2)O_(3) system using the model developed in this study better matches experimental data from literature in terms of both trend and numerical value.Therefore,the model developed in this study can serve as a robust modeling tool for metallurgical processes,and the thermodynamic data predicted by this new model can be used to improve the metallurgical technology.展开更多
A cognitive radio transmitted reference ultra-wideband(CR-TR-UWB) system is proposed to improve the performance of TR-UWB systems with narrowband interference(NBI) from primary users(PU).The transmitter of the C...A cognitive radio transmitted reference ultra-wideband(CR-TR-UWB) system is proposed to improve the performance of TR-UWB systems with narrowband interference(NBI) from primary users(PU).The transmitter of the CR-TR-UWB system detects the band of PU,and then sends prolate spheroidal wave functions(PSWF) pulses with the same limited band as PU's to reduce interference with PU.The receiver uses a notch filter before autocorrelation to eliminate NBI from PU.The simulation results show that the bit error rate(BER) performance of the CR-TR-UWB system is close to that of TR-UWB systems without NBI when the system is interfered by single or double NBIs with a signal to interference ratio(SIR) of 0 dB,and if the signal to noise ratio(SNR) is 10 dB and the SIR varies from-20 to 10 dB,BER performance varies no more than an order of magnitude.The system has excellent resistance to NBI,strong robustness BER performance at different SNRs,and smaller interference with the same frequency band PU.展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behav...Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary.In this paper,we propose a heterogeneous discrete neural network(HDNN)consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron.These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered.The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents.It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths.Furthermore,the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated,revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases.展开更多
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti...Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.展开更多
BACKGROUND Adenocarcinoma is the most common subtype of prostate cancer.Prostatic urothelial carcinoma(UC)typically originates from the prostatic urethra.The concurrent occurrence of adenocarcinoma and UC of the prost...BACKGROUND Adenocarcinoma is the most common subtype of prostate cancer.Prostatic urothelial carcinoma(UC)typically originates from the prostatic urethra.The concurrent occurrence of adenocarcinoma and UC of the prostate gland is uncommon.CASE SUMMARY We present the case of an 82-year-old male patient with simultaneous adenocarcinoma and UC of the prostate gland.The patient underwent a transrectal ultrasound-guided biopsy,and the pathology test revealed UC.Subsequently,transurethral laser prostatectomy was performed,and the pathology test indicated adenocarcinoma of the prostate with a Gleason score of 3+4 and highgrade UC.Therefore,the patient was treated with androgen deprivation therapy,systemic chemotherapy,and immunotherapy.Magnetic resonance imaging performed during follow-up revealed a prostate tumor classified as cT2cN1M0,stage IVA.Therefore,the patient underwent robotic-assisted radical prostatectomy and bilateral pelvic lymph node dissection.The final pathology test of the prostate gland revealed acinar-type adenocarcinoma,Gleason pattern 4+3,pT2N0M0,and high-grade UC.The patient regularly presented to the clinic for postoperative follow-up evaluations.He did not experience any urinary discomfort.CONCLUSION According to our literature review,this is the first reported case of coexisting adenocarcinoma and UC of the prostate gland.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in sla...According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in slag were calculated, and their equal activity curves were plotted. The influences of slag basicity Q, iron oxide rate R and temperature T on activity NPb O and activity coefficient γPbO were also investigated. Results show that the calculated values of γPb O are in good agreement with the reported experimental data, showing that the model can wholly embody the slag structural characteristics. NPbO departures positively from Raoult values, and increases with increasing Pb O content in slag but changes little with T. γPbO increases with increasing Q, and goes through the maximum with increasing R for basic slag(Q0.3). Results can be applied to the thermodynamic research and operational optimization of modern lead smelting technologies.展开更多
In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between al...In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.展开更多
It is shown by the the law of mass action in combination with the coexistence theory of slag structure that KMn n =NMno /(NFeo [%Mn] does not change with basicities and maintains constant at constant temperature; the...It is shown by the the law of mass action in combination with the coexistence theory of slag structure that KMn n =NMno /(NFeo [%Mn] does not change with basicities and maintains constant at constant temperature; the oxidizing capabilities of multicomponent slag systems containing CaO, MgO etc., can be expressed by NFe tO =NFeO + 6NFe2 O3 + 8NFe3O4; the desulfurizing capabilities of various basic oxides for multicomponent slag systems can be calculated by Ls=8(KCaSNCaO+KMgsNMgo +KFeSNFeO)∑n/[%O]; the dephosphorizing capabili- ties of CaO-MgO-FeO-FeO O3-P2 O5 as well as CaO-FeO-Fe2 O3-A12 O3-P2 O5 molten slags expressed respectively by Lpo=(%P2O5)/[P]2 = 141.94[%O]5∑nK00(1 + K5N2Cao + K6N3CaO + K7N4CaO + K8N2MgO + K9N3MgO + K10N3FeO + K11N4Feo); LPO=(%P2O5)/[P]2= 141.94[%O]5∑nK00(1 + K10N2CaO+ K11N3CaO+ K12N4CaO + K13N3FeO + K14N4FeO) have good agreement with practical values.展开更多
With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this p...With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.展开更多
The 3400-3600 MHz band is one of the most important candidate frequency bands for the rollout of 5 G system. However, the coexistence between 5 G system and fixed-satellite service(FSS) in this frequency band is one o...The 3400-3600 MHz band is one of the most important candidate frequency bands for the rollout of 5 G system. However, the coexistence between 5 G system and fixed-satellite service(FSS) in this frequency band is one of the most challenging problems for both academic researchers and industry engineers. In this paper, the saturation interference from 5 G base stations to the existing FSS above 3600 MHz is analyzed and the coexistence solution is achieved, which can reduce the interference and guarantee the coexistence between 5 G system and FSS. Furthermore, the Monte Carlo simulation, laboratory test and field test are carried out to verify the coexistence solution.Results show that an isolation distance of 1-2 km is required to avoid the saturation interference in terms of the adjacent bands scenario.To further reduce the isolation distance to 50 m, additional isolation of 35 dB will be necessary, which can be fulfilled by installing a filter at the input port of LNB from a real implementation perspective.展开更多
A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution has been developed based on the ion and molecule coexistence theory,and veri...A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution has been developed based on the ion and molecule coexistence theory,and verified in the NaCl-KCl-H2O ternary system at 298.15 K. To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions,the mass action concentrations of components in the NaCl-H2O binary strong electrolyte aqueous solution were also computed at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activity because they were obtained at different standard states and concentration units. The results show that the transformation coefficients between calculated mass action concentrations and reported activities of the same components change in a very narrow range. The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.展开更多
Systematic total Routhian surface calculations for even–even N = 104 midshell isotones with 66≤Z≤82 have been carried out based on a more realistic diffuse-surface deformed Woods–Saxon nuclear potential in (β_2, ...Systematic total Routhian surface calculations for even–even N = 104 midshell isotones with 66≤Z≤82 have been carried out based on a more realistic diffuse-surface deformed Woods–Saxon nuclear potential in (β_2, γ, β_4) deformation space, focusing on the rotation-induced shapecoexisting phenomena. As an example and basic test, the oblate property at the ground state in ^(184)Hg is well reproduced and the microscopic origin is analyzed from the single-particle structure. The present calculated results are compared with available experimental information, showing a good agreement. It is systematically found that in this isotonic chain several bands with different shapes(e.g., prolate, oblate and superdeformed prolate bands, seven non-collective band) may show a strong competition and coexisting phenomenon at a certain domain of the rotational frequency.展开更多
The self-excited attractors and hidden attractors in a memcapacitive system which has three elements are studied in this paper.The critical parameter of stable and unstable states is calculated by identifying the eige...The self-excited attractors and hidden attractors in a memcapacitive system which has three elements are studied in this paper.The critical parameter of stable and unstable states is calculated by identifying the eigenvalues of Jacobian matrix.Besides,complex dynamical behaviors are investigated in the system,such as coexisting attractors,hidden attractors,coexisting bifurcation modes,intermittent chaos,and multistability.From the theoretical analyses and numerical simulations,it is found that there are four different kinds of transient transition behaviors in the memcapacitive system.Finally,field programmable gate array(FPGA)is used to implement the proposed chaotic system.展开更多
The interference coexistence performance between the systems of a Long Term Evolution(LTE) network and Mobile Satellite Service(MSS) system,both of which work around the frequency of approximately 2 GHz according to t...The interference coexistence performance between the systems of a Long Term Evolution(LTE) network and Mobile Satellite Service(MSS) system,both of which work around the frequency of approximately 2 GHz according to the bandwidth allocation in China,is proposed in this article.The related background of an MSS system and the common terminologies are introduced.Further,the coexistence scenarios of different coverage situations shared by the two systems are discussed.The interference impact of an MSS transmission on an LTE system is evaluated using a specific Monte Carlo method.Finally,simulation results show that although no crucial issues for the coexistence of an LTE downlink and the MSS are observed,the LTE uplink suffers a considerable amount of interference from the MSS transmission.Given the insufficient isolation between LTE and MSS existing networks,and the rapid advance in the field of LTE,problems may emerge in the near future.Further,this article can be of significance in providing reference for frequency spectrum planning in the existing LTE networks.展开更多
The integer order memristive time delay chaotic system has attracted much attention and has been well discussed.However,the fractional order system is closer to the real system.In this paper,a nonlinear time delay cha...The integer order memristive time delay chaotic system has attracted much attention and has been well discussed.However,the fractional order system is closer to the real system.In this paper,a nonlinear time delay chaotic circuit based on fractional order memristive system was proposed.Some dynamical properties,including equilibrium points,stability,bifurcation,and Lyapunov exponent of the oscillator,were investigated in detail by theoretical analyses and simulations.Moreover,the nonlinear phenomena of coexisting bifurcation and attractor was found.The phenomenon shows that the state of this oscilator was highly sensitive to its initial value,which is called coexistent oscillation in this paper.Finally,the results of the system circuit simulation accomplished by Multisim were perfectly consistent with theoretical analyses and numerical simulation.展开更多
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62366014 and 61961019)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202008)。
文摘This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.
基金support of the Brazil-ian research agencies,the National Council for Scientific and Technological Development (CNPq)(Nos. 301355/2018-5 and 200198/2022-0)FAPERJ-CNE (No. E-26/202.711/2018)+1 种基金FAPERJ Nota 10 (No. E-26/200.357/2020)CAPES (Finance code 001 and 88881.310620/2018-01)。
文摘In a global dynamic analysis,the coexisting attractors and their basins are the main tools to understand the system behavior and safety.However,both basins and attractors can be drastically influenced by uncertainties.The aim of this work is to illustrate a methodology for the global dynamic analysis of nondeterministic dynamical systems with competing attractors.Accordingly,analytical and numerical tools for calculation of nondeterministic global structures,namely attractors and basins,are proposed.First,based on the definition of the Perron-Frobenius,Koopman and Foias linear operators,a global dynamic description through phase-space operators is presented for both deterministic and nondeterministic cases.In this context,the stochastic basins of attraction and attractors’distributions replace the usual basin and attractor concepts.Then,numerical implementation of these concepts is accomplished via an adaptative phase-space discretization strategy based on the classical Ulam method.Sample results of the methodology are presented for a canonical dynamical system.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC 52175352).
文摘A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activities on the thermodynamic properties of slags.Using this model,iso-activity contours were obtained for oxide components CaO,SiO_(2) and Al2O3 in this system at temperatures of 1,873 K and 1,773 K.When compared with the IMCT model,it is found that the predicted activities of oxide components in the CaO-SiO_(2)-Al_(2)O_(3) system using the model developed in this study better matches experimental data from literature in terms of both trend and numerical value.Therefore,the model developed in this study can serve as a robust modeling tool for metallurgical processes,and the thermodynamic data predicted by this new model can be used to improve the metallurgical technology.
基金The National Research and Development Program of China(863 Program)(No.2007AA12Z238)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No. 12KJD510008)
文摘A cognitive radio transmitted reference ultra-wideband(CR-TR-UWB) system is proposed to improve the performance of TR-UWB systems with narrowband interference(NBI) from primary users(PU).The transmitter of the CR-TR-UWB system detects the band of PU,and then sends prolate spheroidal wave functions(PSWF) pulses with the same limited band as PU's to reduce interference with PU.The receiver uses a notch filter before autocorrelation to eliminate NBI from PU.The simulation results show that the bit error rate(BER) performance of the CR-TR-UWB system is close to that of TR-UWB systems without NBI when the system is interfered by single or double NBIs with a signal to interference ratio(SIR) of 0 dB,and if the signal to noise ratio(SNR) is 10 dB and the SIR varies from-20 to 10 dB,BER performance varies no more than an order of magnitude.The system has excellent resistance to NBI,strong robustness BER performance at different SNRs,and smaller interference with the same frequency band PU.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
基金Project supported by the Key Projects of Hunan Provincial Department of Education(Grant No.23A0133)the Natural Science Foundation of Hunan Province(Grant No.2022JJ30572)the National Natural Science Foundations of China(Grant No.62171401).
文摘Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary.In this paper,we propose a heterogeneous discrete neural network(HDNN)consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron.These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered.The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents.It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths.Furthermore,the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated,revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases.
基金supported by the National Natural Science Foundation of China (Nos.52074334,51991365)the National Key R&D Program of China (2021YFC2800903),which are gratefully acknowledged.
文摘Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.
文摘BACKGROUND Adenocarcinoma is the most common subtype of prostate cancer.Prostatic urothelial carcinoma(UC)typically originates from the prostatic urethra.The concurrent occurrence of adenocarcinoma and UC of the prostate gland is uncommon.CASE SUMMARY We present the case of an 82-year-old male patient with simultaneous adenocarcinoma and UC of the prostate gland.The patient underwent a transrectal ultrasound-guided biopsy,and the pathology test revealed UC.Subsequently,transurethral laser prostatectomy was performed,and the pathology test indicated adenocarcinoma of the prostate with a Gleason score of 3+4 and highgrade UC.Therefore,the patient was treated with androgen deprivation therapy,systemic chemotherapy,and immunotherapy.Magnetic resonance imaging performed during follow-up revealed a prostate tumor classified as cT2cN1M0,stage IVA.Therefore,the patient underwent robotic-assisted radical prostatectomy and bilateral pelvic lymph node dissection.The final pathology test of the prostate gland revealed acinar-type adenocarcinoma,Gleason pattern 4+3,pT2N0M0,and high-grade UC.The patient regularly presented to the clinic for postoperative follow-up evaluations.He did not experience any urinary discomfort.CONCLUSION According to our literature review,this is the first reported case of coexisting adenocarcinoma and UC of the prostate gland.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
基金Project(2013BAB03B05)supported by the National Key Technology R&D Program of China during the 12th Five-Year Plan Period,ChinaProject(20133BCB23018)supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject(2012ZBAB206002)supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in slag were calculated, and their equal activity curves were plotted. The influences of slag basicity Q, iron oxide rate R and temperature T on activity NPb O and activity coefficient γPbO were also investigated. Results show that the calculated values of γPb O are in good agreement with the reported experimental data, showing that the model can wholly embody the slag structural characteristics. NPbO departures positively from Raoult values, and increases with increasing Pb O content in slag but changes little with T. γPbO increases with increasing Q, and goes through the maximum with increasing R for basic slag(Q0.3). Results can be applied to the thermodynamic research and operational optimization of modern lead smelting technologies.
文摘In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.
文摘It is shown by the the law of mass action in combination with the coexistence theory of slag structure that KMn n =NMno /(NFeo [%Mn] does not change with basicities and maintains constant at constant temperature; the oxidizing capabilities of multicomponent slag systems containing CaO, MgO etc., can be expressed by NFe tO =NFeO + 6NFe2 O3 + 8NFe3O4; the desulfurizing capabilities of various basic oxides for multicomponent slag systems can be calculated by Ls=8(KCaSNCaO+KMgsNMgo +KFeSNFeO)∑n/[%O]; the dephosphorizing capabili- ties of CaO-MgO-FeO-FeO O3-P2 O5 as well as CaO-FeO-Fe2 O3-A12 O3-P2 O5 molten slags expressed respectively by Lpo=(%P2O5)/[P]2 = 141.94[%O]5∑nK00(1 + K5N2Cao + K6N3CaO + K7N4CaO + K8N2MgO + K9N3MgO + K10N3FeO + K11N4Feo); LPO=(%P2O5)/[P]2= 141.94[%O]5∑nK00(1 + K10N2CaO+ K11N3CaO+ K12N4CaO + K13N3FeO + K14N4FeO) have good agreement with practical values.
基金supported by the National Natural Science Foundation of China(Grant Nos.51475246 and 51075215)the Natural Science Foundation of Jiangsu Province of China(Grant No.Bk20131402)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(Grand No.[2012]1707)
文摘With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.
基金partly supported by National Natural Science Foundation of China (NSFC) (Grant No. 61525101, 61631003)
文摘The 3400-3600 MHz band is one of the most important candidate frequency bands for the rollout of 5 G system. However, the coexistence between 5 G system and fixed-satellite service(FSS) in this frequency band is one of the most challenging problems for both academic researchers and industry engineers. In this paper, the saturation interference from 5 G base stations to the existing FSS above 3600 MHz is analyzed and the coexistence solution is achieved, which can reduce the interference and guarantee the coexistence between 5 G system and FSS. Furthermore, the Monte Carlo simulation, laboratory test and field test are carried out to verify the coexistence solution.Results show that an isolation distance of 1-2 km is required to avoid the saturation interference in terms of the adjacent bands scenario.To further reduce the isolation distance to 50 m, additional isolation of 35 dB will be necessary, which can be fulfilled by installing a filter at the input port of LNB from a real implementation perspective.
文摘A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution has been developed based on the ion and molecule coexistence theory,and verified in the NaCl-KCl-H2O ternary system at 298.15 K. To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions,the mass action concentrations of components in the NaCl-H2O binary strong electrolyte aqueous solution were also computed at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activity because they were obtained at different standard states and concentration units. The results show that the transformation coefficients between calculated mass action concentrations and reported activities of the same components change in a very narrow range. The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.
基金supported by the Natural Science Foundation of China(Nos.11675148 and 11505157)the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province(No.2017GGJS008)+2 种基金the Foundation and Advanced Technology Research Program of Henan Province(No.162300410222)the Outstanding Young Talent Research Fund of Zhengzhou University(No.1521317002)the Physics Research and Development Program of Zhengzhou University(No.32410017)
文摘Systematic total Routhian surface calculations for even–even N = 104 midshell isotones with 66≤Z≤82 have been carried out based on a more realistic diffuse-surface deformed Woods–Saxon nuclear potential in (β_2, γ, β_4) deformation space, focusing on the rotation-induced shapecoexisting phenomena. As an example and basic test, the oblate property at the ground state in ^(184)Hg is well reproduced and the microscopic origin is analyzed from the single-particle structure. The present calculated results are compared with available experimental information, showing a good agreement. It is systematically found that in this isotonic chain several bands with different shapes(e.g., prolate, oblate and superdeformed prolate bands, seven non-collective band) may show a strong competition and coexisting phenomenon at a certain domain of the rotational frequency.
基金Project supported by the National Natural Science Foundation of China(Grant No.51377124)the Science Fund for New Star of Youth Science and Technology of Shaanxi Province,China(Grant No.2016KJXX-40).
文摘The self-excited attractors and hidden attractors in a memcapacitive system which has three elements are studied in this paper.The critical parameter of stable and unstable states is calculated by identifying the eigenvalues of Jacobian matrix.Besides,complex dynamical behaviors are investigated in the system,such as coexisting attractors,hidden attractors,coexisting bifurcation modes,intermittent chaos,and multistability.From the theoretical analyses and numerical simulations,it is found that there are four different kinds of transient transition behaviors in the memcapacitive system.Finally,field programmable gate array(FPGA)is used to implement the proposed chaotic system.
文摘The interference coexistence performance between the systems of a Long Term Evolution(LTE) network and Mobile Satellite Service(MSS) system,both of which work around the frequency of approximately 2 GHz according to the bandwidth allocation in China,is proposed in this article.The related background of an MSS system and the common terminologies are introduced.Further,the coexistence scenarios of different coverage situations shared by the two systems are discussed.The interference impact of an MSS transmission on an LTE system is evaluated using a specific Monte Carlo method.Finally,simulation results show that although no crucial issues for the coexistence of an LTE downlink and the MSS are observed,the LTE uplink suffers a considerable amount of interference from the MSS transmission.Given the insufficient isolation between LTE and MSS existing networks,and the rapid advance in the field of LTE,problems may emerge in the near future.Further,this article can be of significance in providing reference for frequency spectrum planning in the existing LTE networks.
基金the National Natural Science Foundation of China(Grant No.61201227).
文摘The integer order memristive time delay chaotic system has attracted much attention and has been well discussed.However,the fractional order system is closer to the real system.In this paper,a nonlinear time delay chaotic circuit based on fractional order memristive system was proposed.Some dynamical properties,including equilibrium points,stability,bifurcation,and Lyapunov exponent of the oscillator,were investigated in detail by theoretical analyses and simulations.Moreover,the nonlinear phenomena of coexisting bifurcation and attractor was found.The phenomenon shows that the state of this oscilator was highly sensitive to its initial value,which is called coexistent oscillation in this paper.Finally,the results of the system circuit simulation accomplished by Multisim were perfectly consistent with theoretical analyses and numerical simulation.