期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production 被引量:1
1
作者 吴现力 胡仰栋 +1 位作者 伍联营 李红 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期330-338,共9页
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the ... In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective. 展开更多
关键词 cogeneration system thermal power plant multi-stage flash desalination reverse osmosis desalination non-linear programming optimal design
下载PDF
Step-Loading Characteristics of Gas Engine Cogeneration System Using Doubly-Fed Induction Generator in Stand-Alone Operation
2
作者 Tetsuji Daido Yushi Miura +1 位作者 Toshifumi Ise Yuki Sato 《Journal of Energy and Power Engineering》 2014年第3期530-542,共13页
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp... Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading. 展开更多
关键词 Step load change doubly-fed induction generator gas engine cogeneration system stand-alone operation.
下载PDF
Research on a simulated 60 kW PEMFC cogeneration system for domestic application 被引量:3
3
作者 张颖颖 余晴春 +1 位作者 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第3期450-457,共8页
The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are ... The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system. 展开更多
关键词 Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration Coordination strategy Power response Heat management
下载PDF
A Cogeneration System for an Apartment Building Based on Distributed Heat Storage Technology 被引量:1
4
作者 H. Morita H. Yamaguchi +1 位作者 Y. Kiuchi Y. Hisazumi 《Journal of Energy and Power Engineering》 2010年第12期9-16,共8页
In order for economically viable distributed generation systems for apartment buildings to spread, it is essential to develop an efficient and low-cost heat supply system. We have developed a new eogeneration system c... In order for economically viable distributed generation systems for apartment buildings to spread, it is essential to develop an efficient and low-cost heat supply system. We have developed a new eogeneration system called the Neighboring Cogeneration system (NCG). The key concept of this system is to install a heat accumulator with a hot water supply and a room heating function at each household and to connect different households by a single loop of hot water pipe. As a result, time leveling of the heat supply and heat transferring among households becomes possible. Thus, the costs of the pipe and the heat source equipment decrease. Furthermore, because all of the heat accumulators store heat, the total heat storage capacity is large enough for cogeneration to generate exhaust heat according to the electricity demand and with a high operating rate. In this paper, we report the results of the NCG system for 7 lived-in households. The controlling system worked efficiently. All of the households were able to use hot water without any difficulties. Further, we report the results of the energy saving effect of the NCG system for 50 lived-in households by means of a simulation based on the experimental results for NEXT21. 展开更多
关键词 cogeneration heat distribution heat accumulation dynamic simulation.
下载PDF
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
5
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
Analysis of an electricity-cooling cogeneration system for waste heat recovery of gaseous fuel engines 被引量:4
6
作者 SHU GeQun WANG Xuan +3 位作者 TIAN Hua LIANG YouCai LIU Yu LIU Peng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第1期37-46,共10页
Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cyc... Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cycle for the WHR of gaseous fuel engines is proposed in the paper.This system can avoid wasting the heat in condenser so that the efficiency of the whole WHR system improves,but the condensing temperature of Rankin cycle(RC)must increase in order to use absorption refrigeration system,which leads to the decrease of RC output power.Therefore,the relationship between the profit of absorption refrigeration system and the loss of RC in this combined system is the mainly studied content in the paper.Because the energy quality of cooling and electricity are different,cooling power in absorption refrigeration is converted to corresponding electrical power consumed by electric cooling system,which is defined as equivalent electrical power.With this method,the effects of some important operation parameters on the performance of the ECCS are researched,and the equivalent efficiency,exergy efficiency and primary energy rate are compared in the paper. 展开更多
关键词 gaseous fuel engines waste heat recovery electricity-cooling cogeneration Rankin cycle absorption refrigeration
原文传递
CO_2 Mitigation in Coal Gasification Cogeneration Systems with Integration of the Shift Reaction, CO_2 Absorption and Methanol Production
7
作者 Yuanyuan DUAN Jin ZHANG Key Laboratory of Thermal Science and Power Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 2004年第3期193-198,共6页
Cogeneration of electricity and liquid fuel can achieve higher efficiencies than electricity generation alone in Integrated Gasification Combined Cycle (IGCC), and cogeneration systems are also expected to mitigate CO... Cogeneration of electricity and liquid fuel can achieve higher efficiencies than electricity generation alone in Integrated Gasification Combined Cycle (IGCC), and cogeneration systems are also expected to mitigate CO2 emissions. A proposed methanol-electricity cogeneration system was analyzed in this paper using exergy method to evaluate the specified system. A simple cogeneration scheme and a complicated scheme including the shift reaction and CO2 removal were compared. The results show that the complicated scheme consumes more energy, but has a higher methanol synthesis ratio with partial capture of CO2.In those methanol and electricity cogeneration systems, the CO2 mitigation is not merely an additional process that consumes energy and reduces the overall efficiency, but is integrated into the methanol production. 展开更多
关键词 cogeneration system METHANOL synthesis CO2 MITIGATION EXERGY analysis
原文传递
Performance analysis of cogeneration systems based on micro gas turbine(MGT),organic Rankine cycle and ejector refrigeration cycle
8
作者 Zemin BO Kai ZHANG +2 位作者 Peijie SUN Xiaojing LV Yiwu WENG 《Frontiers in Energy》 SCIE CSCD 2019年第1期54-63,共10页
In this paper,the operation perfonnance of three novel kinds of cogeneration systems under design and off-design condition was investigated.The systems are MGT(micro gas turbine)+ORC(organic Rankine cycle)for electric... In this paper,the operation perfonnance of three novel kinds of cogeneration systems under design and off-design condition was investigated.The systems are MGT(micro gas turbine)+ORC(organic Rankine cycle)for electricity demand,MGT+ERC(ejector refrigeration cycle)for electricity and cooling demand,and MGT+ORC+ERC for electricity and cooling demand.The effect of 5 different working fluids on cogeneration systems was studied.The results show that under the design condition,when using R600 in the bottoming cycle,the MGT+ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334,and the MGT+ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408.For the MGT+ORC+ERC system,the total output is between the other two systems,which is 129.3 kW with a thermal efficiency of 0.370.For the effect of different working fluids,R123 is the most suitable working fluid for MGT+ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ERC with the maximum cooling capacity,while both R600 and R123 can make MGT+ORC+ERC achieve a good comprehensive performance of refrigeration and electricity.The thermal efficiency of three cogeneration systems can be effectively improved under oredesign condition because the bottoming cycle can compensate for the power decrease of MGT.The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems(DES). 展开更多
关键词 cogeneration system different working FLUIDS micro gas turbine(MGT) organic Rankine cycle(ORC) EJECTOR REFRIGERATION cycle(ERC)
原文传递
Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating
9
作者 Peiyuan PAN Yunyun WU Heng CHEN 《Frontiers in Energy》 SCIE CSCD 2022年第2期321-335,共15页
An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the t... An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable. 展开更多
关键词 biomass-fired cogeneration district heat production system absorption heat pump extraction steam cooling water low-pressure feedwater
原文传递
Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System 被引量:1
10
作者 Liqing Yan Jiang Liu +1 位作者 Guangwei Ying Ning Zhang 《Energy Engineering》 EI 2023年第8期1919-1938,共20页
Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was a... Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate.Rankine cycle is an effective waste heat recovery method,and a steam boiler organic Rankine cycle(ORC)cogeneration waste heat utilization method is proposed.The system model simulation is constructed and verified.First,a thermodynamic model was constructed in MATLAB and five suitable work gases were selected to analyze the effects of evaporation temperature and condensation temperature on the network and thermal efficiency of the waste heat cycle power system.Secondly,the ORC model is invoked in TRNSYS to construct the improved cogeneration system,and the rationality of the remaining heat utilization methods is determined by calculating and analyzing the thermal performance,economy,and environmental protection of the improved system.The simulation results show that the system can generate about 552,000 kWh of electricity per year,and improving the energy utilization rate from 0.72 to 0.78. 展开更多
关键词 cogeneration waste heat recovery organic Rankine cycle simulation model
下载PDF
Proposal and Assessment of an Engine-Based Distributed Steam and Power Cogeneration System Integrated with an Absorption-Compression Heat Pump
11
作者 LIU Changchun HAN Wei +1 位作者 WANG Zefeng ZHANG Na 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1165-1179,共15页
Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recover... Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recovery of flue gas and jacket water heat is essential.In a conventional internal combustion engine-based steam and power cogeneration system,the low-temperature(less than 170°C)heat from flue gas and jacket water is usually directly discharged to the environment,which dramatically reduces the thermal and economic performance.In this work,a high-temperature heat pump is employed to recover this part of low-temperature heat for steam generation.The sensible heat of the flue gas and jacket water is cascade utilized in a steam generator and a heat pump.Simulation results show that the process steam yield of the proposed system is almost doubled(increased by 703 kg/h)compared to that of an engine-based cogeneration system without a heat pump.The proposed system can reduce natural gas consumption,C 02 and NOx emissions by approximately 199069 m3,372.64 tons and 3.02 tons per year,respectively,with a primary energy ratio and exergy efficiency of 72.52%and 46.28%,respectively.Moreover,the proposed system has a lower payback period with a value of 5.11 years,and the determining factors that affect the payback period are natural gas and electricity prices.The total net present value of the proposed system within its lifespan is 2441581 USD,and an extra profit of 785748 USD can be obtained compared to the reference system.This is a promising approach for replacing gas boilers for process steam production in industrial sectors. 展开更多
关键词 steam and power cogeneration HACHP ICE high-temperature heat pump
原文传递
Case Studies of Energy Saving and CO<sub>2</sub>Reduction by Cogeneration and Heat Pump Systems
12
作者 Satoru Okamoto 《Open Journal of Energy Efficiency》 2013年第2期107-120,共14页
This paper describes two case studies: 1) a cogeneration system of a hospital and 2) a heat pump system installed in an aquarium that uses seawater for latent heat storage. The cogeneration system is an autonomous sys... This paper describes two case studies: 1) a cogeneration system of a hospital and 2) a heat pump system installed in an aquarium that uses seawater for latent heat storage. The cogeneration system is an autonomous system that combines the generation of electrical, heating, and cooling energies in a hospital. Cogeneration systems can provide simultaneous heating and cooling. No technical obstacles were identified for implementing the cogeneration system. The average ratio between electric and thermal loads in the hospital was suitable for the cogeneration system operation. An analysis performed for a non-optimized cogeneration system predicted large potential for energy savings and CO2 reduction. The heat pump system using a low-temperature unutilized heat source is introduced on a heat source load responsive heat pump system, which combines a load variation responsive heat pump utilizing seawater with a latent heat-storage system (ice and water slurry), using nighttime electric power to level the electric power load. The experimental coefficient of performance (COP) of the proposed heat exchanger from the heat pump system, assisted by using seawater as latent heat storage for cooling, is discussed in detail. 展开更多
关键词 cogeneration system Heat Pump system Energy Saving CO2 REDUCTION Hospital AQUARIUM
下载PDF
Low molecular weight alkane-fed solid oxide fuel cells for power and chemicals cogeneration
13
作者 Ermete Antolini 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期711-735,I0015,共26页
This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals ... This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable. 展开更多
关键词 Solid oxide fuel cells ALKANE ALKENE SYNGAS cogeneration
下载PDF
Evaluation of Process and Economic Feasibility of Implementing a Topping Cycle Cogeneration
14
作者 Unique Karki Bhaskaran Gopalakrishnan 《Energy Engineering》 EI 2023年第2期345-365,共21页
Industrial applications that require steam for their end-use generally utilize steam boilers that are typically oversized,citing operations flexibility.Similarly,gas turbine-based power plants corroborate a gas turbin... Industrial applications that require steam for their end-use generally utilize steam boilers that are typically oversized,citing operations flexibility.Similarly,gas turbine-based power plants corroborate a gas turbine system that may eventually relieve the usable exhaust into the atmosphere.This study explores the economic and technical feasibility of a topping cycle combined heat and power(CHP)system.It does so by leveraging a partially loaded boiler or gas turbine by increasing its unused load to generate steam and heat for subsequent usage.To this end,a decision support tool(COGENTEC)was developed,which emulates a given facility’s boiler or gas-turbine system,and its operational parameters with the application of steam turbines.The tool provides necessary insights into the most appropriate parameters that enable a CHP system to be technically and economically advantageous.Based on input variables such as boiler-rated capacity,steam pressure,steam temperature,and existing boiler load,among others,COGENTEC designs a topping cycle CHP system to inform a user whether this system is feasible in their facility or not.If applicable,the tool assists the user to realize the point of break-even(fuel cost incurred and cost savings)at the desired steam flow rate.It also conducts sensitivity analyses between energy usage,cost savings,and payback on the investment of the operating parameters to understand the relationship between relevant variables.By utilizing parameters from a pulp and paper manufacturing facility,the research determines that the fuel cost,electricity cost,and steam flow rate are the most important parameters for the feasibility of the system with a desirable payback on the investment. 展开更多
关键词 cogeneration topping cycle CHP industrial decarbonization energy efficiency
下载PDF
A Decision Method of Cogeneration Operation Schedule by Combining Use of SOFCs and PEFCs
15
作者 Shoji Kawasaki Soma Tange 《Journal of Energy and Power Engineering》 2017年第12期771-778,共8页
In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In ... In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In this study, some rooms interchange electric power and heat with each other for high efficiency and reduction of energy loss. The authors determine an operation schedule of FCs by multi-evaluation from viewpoints of energy cost and CO2 emissions. 展开更多
关键词 FC cogeneration system optimization operation schedule interchange of power and heat.
下载PDF
Biomass Cogeneration Technologies: A Review 被引量:1
16
作者 Theleli Abbas Mohamad Issa Adrian Ilinca 《Journal of Sustainable Bioenergy Systems》 2020年第1期1-15,共15页
Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40 - 50 years. Moreover, ... Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40 - 50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass, etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, we present the different cogeneration systems to provide electrical power and heating for isolated communities. It has been found that the steam turbine process is the most relevant for biomass cogeneration plants for its high efficiency and technological maturity. The future of CHP plants depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market. 展开更多
关键词 cogeneration BIOMASS CHP ERICSSON MOTOR ORC Steam Turbine STERLING MOTOR
下载PDF
Integration of a Gas Fired Steam Power Plant with a Total Site Utility Using a New Cogeneration Targeting Procedure
17
作者 Sajad Khamis Abadi Mohammad Hasan Khoshgoftar Manesh +2 位作者 Marc A.Rosen Majid Amidpour Mohammad Hosein Hamedi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第4期455-468,共14页
A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-... A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site. 展开更多
关键词 INTEGRATION steam power plant site utility cogeneration optimization
下载PDF
Maximum useful energy rate and efficiency of a recuperative Brayton cogeneration plant
18
作者 郝小礼 张国强 《Journal of Central South University》 SCIE EI CAS 2013年第1期156-163,共8页
A thermodynamic model was developed to analyze the performance of cogeneration plant based on irreversible recuperative Brayton cycle. A parameter, dimensionless total useful energy rate (DTUER), was used as the crite... A thermodynamic model was developed to analyze the performance of cogeneration plant based on irreversible recuperative Brayton cycle. A parameter, dimensionless total useful energy rate (DTUER), was used as the criterion for performance optimization of cogeneration plant. The effects of cycle parameters, internal irreversibilities, and recuperator efficiency on maximum DTUER and on the efficiency at maximum DTUER were numerically investigated. The relation between DTUER and cogeneration efficiency was also analyzed. The results show that there exists an optimal compressor pressure ratio which maximizes the DTUER. It is also found that there exists an optimal power-to-heat ratio which results in a dual-maximum DTUER. 展开更多
关键词 recuperative Brayton cycle cogeneration OPTIMIZATION THERMODYNAMICS
下载PDF
Power System Analysis of an Aero-Engine
19
作者 Onder Turan Hakan Aydin 《Journal of Power and Energy Engineering》 2015年第4期443-448,共6页
The aim of this study is analyzed in detail for better understanding of energy and power of an aero-engine. In this regard, this study presents energy equations were applied to the turbofan engine components. The engi... The aim of this study is analyzed in detail for better understanding of energy and power of an aero-engine. In this regard, this study presents energy equations were applied to the turbofan engine components. The engine has a thrust range of 82 to 109 kN. It consists of fan, axial low pressure compressor (LPC), axial high pressure compressor (HPC), an annular combustion chamber, high-pressure turbine (HPT) and low pressure turbine (LPT). The results show that power of the engine flow approaches a maximum value to be 82.85 MW in the combustor outlet, while minimum power is observed at LPC inlet with the value of 1.37 MW. Furthermore, important parameters of the engine are also analyzed from reverse-engineering method. It is expected that results of this study will be beneficial of power, cogeneration and aero-propulsive generation systems in similar environment. 展开更多
关键词 AERO-ENGINE GAS TURBINE ENERGY Power system cogeneration PROPULSION
下载PDF
New type steam turbine for cogeneration
20
作者 He Jianren Yang Qiguo Xu Damao 《Engineering Sciences》 EI 2010年第3期81-84,共4页
A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein. A new type "NCB" cogeneration steam turbine was proposed,which could considerably i... A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein. A new type "NCB" cogeneration steam turbine was proposed,which could considerably increase heat supply capacity,thermal efficiency and electric power. Taking 300 MW cogeneration steam turbine as an example,the results show that heat supply capacity reaches the maximum,i.e. increases by 30 %,thermal efficiency is improved by 12 %,and electric power is enhanced by 15 MW during peak heat load. 展开更多
关键词 cold source new type cogeneration steam turbine energy saving emission reducing economic effect
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部