In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single...In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single PU in their frameworks. In this paper, we will consider a more complicated scenario with multiple PUs and try to investigate the cooperative jamming between multiple PUs and a single SU. When there are multiple PUs in CRN, in order to obtain more spectrum for data transmission, SU will cooperate with multiple PUs at the same time. Considering that both PU and SU are rational and selfish individuals, the interaction between PUs and SU is formulated as a multi-leaders and single-follower Stackelberg game, wherein PU is the leader and SU is the follower. And the Stackelberg Equilibrium(SE) is considered as the final decisions accepted by all PUs and SU. Furthermore, we also prove that when a specific condition is satisfied, the existence of SE can be guaranteed. And a Gauss-Jacobi iterative algorithm is proposed to compute a SE. Finally, simulation results are given to verify the performance and demonstrate that both of the PUs' secrecy rate and the SU's transmission rate can be improved through cooperation.展开更多
To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to...To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.展开更多
A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-base...A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.展开更多
Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisi...Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.展开更多
A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effec...A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node’s reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.展开更多
Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized ...Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized spectrums.The CSS technique is highly applicable due to its fast and efficient performance.5G wireless communication is widely employed for the continuous development of efficient and accurate Internet of Things(IoT)networks.5G wireless communication will potentially lead the way for next generation IoT communication.CSS has established significant consideration as a feasible resource to improve identification performance by developing spatial diversity in receiving signal strength in IoT.In this paper,an optimal CSS for CRN is performed using Offset Quadrature Amplitude Modulation Universal Filtered Multi-Carrier Non-Orthogonal Multiple Access(OQAM/UFMC/NOMA)methodologies.Availability of spectrum and bandwidth utilization is a key challenge in CRN for IoT 5G wireless communication.The optimal solution for CRN in IoT-based 5G communication should be able to provide optimal bandwidth and CSS,low latency,Signal Noise Ratio(SNR)improvement,maximum capacity,offset synchronization,and Peak Average Power Ratio(PAPR)reduction.The Energy Efficient All-Pass Filter(EEAPF)algorithm is used to eliminate PAPR.The deployment approach improves Quality of Service(QoS)in terms of system reliability,throughput,and energy efficiency.Our in-depth experimental results show that the proposed methodology provides an optimal solution when directly compares against current existing methodologies.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information w...Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.展开更多
The proliferation of mobile devices that support the acceleration of data services(especially smartphones)has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceed...The proliferation of mobile devices that support the acceleration of data services(especially smartphones)has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceeding the throughput of the backhaul. To improve spectrum utilization and increase mobile network traffic, in combination with content caching, we study the cooperation between primary and secondary networks via content caching. We consider that the secondary base station assists the primary user by pre-caching some popular primary contents.Thus, the secondary base station can obtain more licensed bandwidth to serve its own user. We mainly focus on the time delay from the backhaul link to the secondary base station. First, in terms of the content caching and the transmission strategies, we provide a cooperation scheme to maximize the secondary user’s effective data transmission rates under the constraint of the primary users target rate. Then, we investigate the impact of the caching allocation and prove that the formulated problem is a concave problem with regard to the caching capacity allocation for any given power allocation. Furthermore, we obtain the joint caching and power allocation by an effective bisection search algorithm. Finally, our results show that the content caching cooperation scheme can achieve significant performance gain for the primary and secondary systems over the traditional two-hop relay cooperation without caching.展开更多
In this paper, a novel multiple-user cooperative spectrum sensing (MCSS) scheme is proposed to achieve the spatial diversity gains for cognitive radio (CR) networks, where only the best relay, selected among all t...In this paper, a novel multiple-user cooperative spectrum sensing (MCSS) scheme is proposed to achieve the spatial diversity gains for cognitive radio (CR) networks, where only the best relay, selected among all the candidate relays in accordance with the quality of channel conditions, is utilized to cooperatively detect the primary user. Closed-form expressions of detection time for the traditional non-cooperative and the proposed MCSS schemes are derived over Rayleigh fading channels. In addition, numerical experimentations are conducted to make a performance comparison between the noncooperative sensing and our scheme. The result shows that by exploiting the multiple-user cooperation, the detection time is reduced greatly and moreover, diversity gains obtained by the MCSS scheme increase with a rise in the number of candidate relays.展开更多
In this paper, we analyze performance of cooperative spectrum sensing under counting rules when exponential model is utilized to characterize the burst nature of primary user (PU) link. Our objective is to minimize ...In this paper, we analyze performance of cooperative spectrum sensing under counting rules when exponential model is utilized to characterize the burst nature of primary user (PU) link. Our objective is to minimize the average error probability (AEP) so that the link utilization in the considered link achieves its maximum. We derive a closed-form expression of AEP as well as the probability of interference (PoI) by classifying cognitive transmission into six events. Then, we consider the minimization of AEP over counting rules under the constraint of interference. As the solution, we develop an efficient algorithm to evaluate the optimal fusion rule. Finally, we verify our analysis in numerical results.展开更多
This paper focuses on the energy efficiency of cognitive relay (CR) networks with cooperative sensing, joint optimization of the sensing time and the signal-to-noise ratio (SNR) is studied to maximize the energy e...This paper focuses on the energy efficiency of cognitive relay (CR) networks with cooperative sensing, joint optimization of the sensing time and the signal-to-noise ratio (SNR) is studied to maximize the energy efficiency of CR network. Theoretical analysis shows that there exists an optimal sensing time and optimal SNR to make the energy efficiency maximized under a constraint of detection probability. Simulation results illustrate that the optimal fusion rule performs better than the OR rule and the AND rule in terms of the energy efficiency. By properly designing the fusion rule threshold as well as the number of cooperative sensing users, the energy efficiency of CR networks can be further improved.展开更多
In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) sy...In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) system, two CR users respectively send their feature parameters to the cooperative recognition center, which is composed of back propagation neural network (BPNN). With two users' cooperation and the application of an error back propagation learning algorithm with momentum, the center improves the performance of modulation recognition, especially when one of the CR users' signal-to-noise ratio (SNR) is low. To measure the performance of the proposed method, simulations are carried out to classify different types of modulated signals corrupted by additive white Gaussian noise (AWGN). The simulation results show that this cooperation algorithm has a better recognition performance than those without cooperation.展开更多
We propose a reputation-based cooperative spectrum sensing scheme in cognitive radio (CR) networks to solve the uncertainty resulting from the multipath fading and shadowing effect. In the proposed scheme, each cooper...We propose a reputation-based cooperative spectrum sensing scheme in cognitive radio (CR) networks to solve the uncertainty resulting from the multipath fading and shadowing effect. In the proposed scheme, each cooperative CR user has a reputation degree that is initialized and adjusted by the central controller, and used to weight the sensing result from the corresponding CR user in the linear fusion process at the central controller. A simple method for adjusting the reputation degree of CR users is also presented. We analyzed and evaluated the detection performance of the reputation-based cooperative spectrum sensing scheme. Simulation results showed that our proposed scheme alleviates the problem of corrupted detection resulting from destructive channel conditions between the primary transmitter and the CR user. The performance of our proposed scheme was improved compared to the average-based linear cooperation scheme, and was similar to that of the optimal linear cooperation scheme with feasible computational complexity. Moreover, our proposed scheme does not require knowledge of channel statistics.展开更多
In this paper, we present a non-transferable utility coalition graph game (NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing (OFDMA) based cog...In this paper, we present a non-transferable utility coalition graph game (NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing (OFDMA) based cognitive radio networks to maximize both system throughput and system faimess. In this algorithm, with the assistance of others SUs, SUs with less available channels to improve their throughput and fairness by forming a directed tree graph according to spectrum availability and traffic demands of SUs. So this scheme can effectively exploit both space and frequency diversity of the system. Performance results show that, NTU-CGG significantly improves system faimess level while not reducing the throughput comparing with other existing algorithms.展开更多
An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cog...An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cognitive radio sensor networks (CRSNs) took advantage of using the cognitive radio (CR) concept to which allowed wireless sensor networks to dynamically access into white space channels which is unused channels. In this paper, we adopted the Generalized Implicit-OR as CRSN sensing protocol to reduce the energy consumption and increase the network lifetime in multiple numbers of greenhouses. Our results showed that enhanced energy consumption and improved network lifetime compared to ordinary WSN.展开更多
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金supported in part by the National Key Research and Development Program of China under Grant 2016QY01W0204in part by Key Industrial Innovation Chain in Industrial Domain under Grant 2016KTZDGY-02in part by National High-Level TalentsSpecial Support Program of China under Grant CS31117200001
文摘In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single PU in their frameworks. In this paper, we will consider a more complicated scenario with multiple PUs and try to investigate the cooperative jamming between multiple PUs and a single SU. When there are multiple PUs in CRN, in order to obtain more spectrum for data transmission, SU will cooperate with multiple PUs at the same time. Considering that both PU and SU are rational and selfish individuals, the interaction between PUs and SU is formulated as a multi-leaders and single-follower Stackelberg game, wherein PU is the leader and SU is the follower. And the Stackelberg Equilibrium(SE) is considered as the final decisions accepted by all PUs and SU. Furthermore, we also prove that when a specific condition is satisfied, the existence of SE can be guaranteed. And a Gauss-Jacobi iterative algorithm is proposed to compute a SE. Finally, simulation results are given to verify the performance and demonstrate that both of the PUs' secrecy rate and the SU's transmission rate can be improved through cooperation.
基金funded by the Six Talent Peaks Project in Jiangsu Province(No.KTHY-052)the National Natural Science Foundation of China(No.61971245)+1 种基金the Science and Technology program of Nantong(Contract No.JC2018048)the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(No.KJS1858).
文摘To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.
基金The National Natural Science Foundation of China(No.61771126,61372104)the Science and Technology Project of State Grid Corporation of China(o.SGRIXTKJ[2015] 349)
文摘A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.
文摘Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.
文摘A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node’s reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.
文摘Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized spectrums.The CSS technique is highly applicable due to its fast and efficient performance.5G wireless communication is widely employed for the continuous development of efficient and accurate Internet of Things(IoT)networks.5G wireless communication will potentially lead the way for next generation IoT communication.CSS has established significant consideration as a feasible resource to improve identification performance by developing spatial diversity in receiving signal strength in IoT.In this paper,an optimal CSS for CRN is performed using Offset Quadrature Amplitude Modulation Universal Filtered Multi-Carrier Non-Orthogonal Multiple Access(OQAM/UFMC/NOMA)methodologies.Availability of spectrum and bandwidth utilization is a key challenge in CRN for IoT 5G wireless communication.The optimal solution for CRN in IoT-based 5G communication should be able to provide optimal bandwidth and CSS,low latency,Signal Noise Ratio(SNR)improvement,maximum capacity,offset synchronization,and Peak Average Power Ratio(PAPR)reduction.The Energy Efficient All-Pass Filter(EEAPF)algorithm is used to eliminate PAPR.The deployment approach improves Quality of Service(QoS)in terms of system reliability,throughput,and energy efficiency.Our in-depth experimental results show that the proposed methodology provides an optimal solution when directly compares against current existing methodologies.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金Acknowledgements The work was supported by National Natural Science Foundation of China (Grant No.60972008). The corresponding author is Jiang Wei.
文摘Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.
基金supported by the National Natural Science Foundation of China (No. 61871283)the Foundation of Pre-Research on Equipment of China (No. 61403120103)the Joint Foundation of Pre-Research on Equipment from Education Department of China (No. 6141A02022336)
文摘The proliferation of mobile devices that support the acceleration of data services(especially smartphones)has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceeding the throughput of the backhaul. To improve spectrum utilization and increase mobile network traffic, in combination with content caching, we study the cooperation between primary and secondary networks via content caching. We consider that the secondary base station assists the primary user by pre-caching some popular primary contents.Thus, the secondary base station can obtain more licensed bandwidth to serve its own user. We mainly focus on the time delay from the backhaul link to the secondary base station. First, in terms of the content caching and the transmission strategies, we provide a cooperation scheme to maximize the secondary user’s effective data transmission rates under the constraint of the primary users target rate. Then, we investigate the impact of the caching allocation and prove that the formulated problem is a concave problem with regard to the caching capacity allocation for any given power allocation. Furthermore, we obtain the joint caching and power allocation by an effective bisection search algorithm. Finally, our results show that the content caching cooperation scheme can achieve significant performance gain for the primary and secondary systems over the traditional two-hop relay cooperation without caching.
基金Supported by the Postgraduate Innovation Program of Scientific Research of Jiangsu Province (Grant Nos. CX08B 080Z, CX09B 150Z)the National Natural Science Foundation of China (Grant No. 60972039)+2 种基金the Key Project of Natural Science Funding of Jiangsu Province (Grant No. BK2007729)the National High-Tech Research & Development Program of China (Grant No. 2009AA01Z241)the Major Development Program of Jiangsu Educational Committee (Grant No. 06KJA51001)
文摘In this paper, a novel multiple-user cooperative spectrum sensing (MCSS) scheme is proposed to achieve the spatial diversity gains for cognitive radio (CR) networks, where only the best relay, selected among all the candidate relays in accordance with the quality of channel conditions, is utilized to cooperatively detect the primary user. Closed-form expressions of detection time for the traditional non-cooperative and the proposed MCSS schemes are derived over Rayleigh fading channels. In addition, numerical experimentations are conducted to make a performance comparison between the noncooperative sensing and our scheme. The result shows that by exploiting the multiple-user cooperation, the detection time is reduced greatly and moreover, diversity gains obtained by the MCSS scheme increase with a rise in the number of candidate relays.
基金supported by the Research Fund for the Doctoral Program of Higher Education(20092125110006)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University(2011D01)+1 种基金the Guangdong Provincial Natural Science Foundation of China(10451802904006030)the Fundamental Research Funds for the Central Universities of China
文摘In this paper, we analyze performance of cooperative spectrum sensing under counting rules when exponential model is utilized to characterize the burst nature of primary user (PU) link. Our objective is to minimize the average error probability (AEP) so that the link utilization in the considered link achieves its maximum. We derive a closed-form expression of AEP as well as the probability of interference (PoI) by classifying cognitive transmission into six events. Then, we consider the minimization of AEP over counting rules under the constraint of interference. As the solution, we develop an efficient algorithm to evaluate the optimal fusion rule. Finally, we verify our analysis in numerical results.
基金supported by the National Science Fund under Grant No. 6087215the Yunnan Research Program of Application Foundation under Grant No.2011FB035the School training fund under granted No.KKZ3201403010
文摘This paper focuses on the energy efficiency of cognitive relay (CR) networks with cooperative sensing, joint optimization of the sensing time and the signal-to-noise ratio (SNR) is studied to maximize the energy efficiency of CR network. Theoretical analysis shows that there exists an optimal sensing time and optimal SNR to make the energy efficiency maximized under a constraint of detection probability. Simulation results illustrate that the optimal fusion rule performs better than the OR rule and the AND rule in terms of the energy efficiency. By properly designing the fusion rule threshold as well as the number of cooperative sensing users, the energy efficiency of CR networks can be further improved.
基金supported by the National Natural Science Foundation of China (60772062)the National Basic Research Program of China (2007CB310607)+1 种基金National Science and Technology Key Project (2009ZX03003-002)the Open Research Fund of National Mobile Communications Research Laboratory and Southeast University (N200813)
文摘In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) system, two CR users respectively send their feature parameters to the cooperative recognition center, which is composed of back propagation neural network (BPNN). With two users' cooperation and the application of an error back propagation learning algorithm with momentum, the center improves the performance of modulation recognition, especially when one of the CR users' signal-to-noise ratio (SNR) is low. To measure the performance of the proposed method, simulations are carried out to classify different types of modulated signals corrupted by additive white Gaussian noise (AWGN). The simulation results show that this cooperation algorithm has a better recognition performance than those without cooperation.
基金Project supported by the National Natural Science Foundation of China (No 60772093)the National Basic Research Program of China (No 2009CB320405)the Zhejiang Provincial Foundation for Returnees
文摘We propose a reputation-based cooperative spectrum sensing scheme in cognitive radio (CR) networks to solve the uncertainty resulting from the multipath fading and shadowing effect. In the proposed scheme, each cooperative CR user has a reputation degree that is initialized and adjusted by the central controller, and used to weight the sensing result from the corresponding CR user in the linear fusion process at the central controller. A simple method for adjusting the reputation degree of CR users is also presented. We analyzed and evaluated the detection performance of the reputation-based cooperative spectrum sensing scheme. Simulation results showed that our proposed scheme alleviates the problem of corrupted detection resulting from destructive channel conditions between the primary transmitter and the CR user. The performance of our proposed scheme was improved compared to the average-based linear cooperation scheme, and was similar to that of the optimal linear cooperation scheme with feasible computational complexity. Moreover, our proposed scheme does not require knowledge of channel statistics.
基金supported by the National Natural Science Funds of China for Young Scholar(61001115)the Beijing Natural Science Foundation of China(4102044)the National Natural Science Foundation of China(61271182)
文摘In this paper, we present a non-transferable utility coalition graph game (NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing (OFDMA) based cognitive radio networks to maximize both system throughput and system faimess. In this algorithm, with the assistance of others SUs, SUs with less available channels to improve their throughput and fairness by forming a directed tree graph according to spectrum availability and traffic demands of SUs. So this scheme can effectively exploit both space and frequency diversity of the system. Performance results show that, NTU-CGG significantly improves system faimess level while not reducing the throughput comparing with other existing algorithms.
文摘An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cognitive radio sensor networks (CRSNs) took advantage of using the cognitive radio (CR) concept to which allowed wireless sensor networks to dynamically access into white space channels which is unused channels. In this paper, we adopted the Generalized Implicit-OR as CRSN sensing protocol to reduce the energy consumption and increase the network lifetime in multiple numbers of greenhouses. Our results showed that enhanced energy consumption and improved network lifetime compared to ordinary WSN.