期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Modified Black Widow Optimization-Based Enhanced Threshold Energy Detection Technique for Spectrum Sensing in Cognitive Radio Networks
1
作者 R.Saravanan R.Muthaiah A.Rajesh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2339-2356,共18页
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second... This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques. 展开更多
关键词 cognitive radio network spectrum sensing noise uncertainty modified black widow optimization algorithm energy detection technique
下载PDF
Optimization of Cognitive Radio System Using Enhanced Firefly Algorithm
2
作者 Nitin Mittal Rohit Salgotra +3 位作者 Abhishek Sharma Sandeep Kaur SSAskar Mohamed Abouhawwash 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3159-3177,共19页
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi... The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results. 展开更多
关键词 Firefly algorithm cognitive radio bit error rate genetic algorithm simulated annealing biogeography-based optimization
下载PDF
Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering Scheme for Cognitive Radio Wireless Sensor Networks
3
作者 Sami Saeed Binyamin Mahmoud Ragab 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期105-119,共15页
Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a prom... Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches. 展开更多
关键词 cognitive radio wireless sensor networks CLUSTERING dwarf mongoose optimization algorithm fitness function
下载PDF
Multi-Objective Bacterial Foraging Optimization Algorithm Based on Effective Area in Cognitive Emergency Communication Networks
4
作者 Shibing Zhang Xue Ji +1 位作者 Lili Guo Zhihua Bao 《China Communications》 SCIE CSCD 2021年第12期252-269,共18页
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg... Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence. 展开更多
关键词 wireless communications emergency communications cognitive radio networks multi-objective optimization algorithm effective areas self-adaption
下载PDF
Adaptive Resources Allocation Algorithm Based on Modified PSO for Cognitive Radio System 被引量:9
5
作者 Yi Yang Qinyu Zhang +3 位作者 Ye Wang Takahiro Emoto Masatake Akutagawa Shinsuke Konaka 《China Communications》 SCIE CSCD 2019年第5期83-92,共10页
Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource all... Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource allocation in cognitive radio also has its own issues, such as the flexibility of the allocation algorithm, the performance of resource allocation, and so on. In order to increase the flexibility of the allocation algorithm for cognitive radio, more and more researches are focusing on the evolutionary algorithms, such as genetic algorithm(GA), particle swarm optimization(PSO). Evolutionary algorithm can greatly improve the flexibility of the allocation algorithm for cognitive radio system in different communication scenarios, but the performances are relatively lower than the original mathematical methods. So in this paper, we proposed an adaptive resource allocation algorithm based on modified PSO for cognitive radio system to solve these problems. Modified particle swarm optimization(Modified PSO) has both genetic algorithm(GA) and particle swarm optimization(PSO)’s updating processes which makes this modified PSO overcame PSO’s own disadvantages and keep advantages. Simulation results showed our proposed algorithm has enough flexibility to meet cognitive radio systems’ requirements, and also has a better performance than original PSO. 展开更多
关键词 cognitive RADIO particle SWARM optimization GENETIC algorithm performance analysis FLEXIBILITY
下载PDF
Optimal Cooperative Spectrum Sensing Based on Butterfly Optimization Algorithm 被引量:4
6
作者 Noor Gul Saeed Ahmed +2 位作者 Atif Elahi Su Min Kim Junsu Kim 《Computers, Materials & Continua》 SCIE EI 2022年第4期369-387,共19页
Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best asp... Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs. 展开更多
关键词 Internet of Things cognitive radio network butterfly optimization algorithm particle swarm optimization malicious users genetic algorithm
下载PDF
Design of Clustering Techniques in Cognitive Radio Sensor Networks
7
作者 R.Ganesh Babu D.Hemanand +1 位作者 V.Amudha S.Sugumaran 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期441-456,共16页
In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Us... In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity. 展开更多
关键词 Adaptive swarm distributed clustering cognitive radio clustering algorithm distributed swarm intelligent energy efficient distributed cluster-based sensing multi modal optimization
下载PDF
Cooperative detection algorithm of spectrum holes in cognitive radio
8
作者 石磊 叶准 张中兆 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第1期27-30,共4页
To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds... To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds of each sensing user are discussed. Theoretical analysis and simulation results indicate that the detection probability of optimal decision threshold rules is better than that of determined threshold rules when the false alarm of the fusion center is constant. The proposed optimal cooperative detection algorithm improves the detection performance of primary users as the attendees grow. The 2 dB gain of detection probability can be obtained when a new sensing user joins in, and there is a 17 dB improvement when the accumulation number increases from 1 to 50. 展开更多
关键词 cognitive radio spectrum detection optimal cooperative algorithm
下载PDF
A Forward-Looking Nash Game and Its Application to Achieving Pareto-Efficient Optimization
9
作者 Jie Ren Kai-Kit Wong Jianjun Hou 《Applied Mathematics》 2013年第12期1609-1615,共7页
Recognizing the fact that a player’s cognition plays a defining role in the resulting equilibrium of a game of competition, this paper provides the foundation for a Nash game with forward-looking players by presentin... Recognizing the fact that a player’s cognition plays a defining role in the resulting equilibrium of a game of competition, this paper provides the foundation for a Nash game with forward-looking players by presenting a formal definition of the Nash game with consideration of the players’ belief. We use a simple two-firm model to demonstrate its fundamental difference from the standard Nash and Stackelberg games. Then we show that the players’ belief functions can be regarded as the optimization parameters for directing the game towards a much more desirable equilibrium. 展开更多
关键词 BELIEF cognition Iterative algorithm NASH Equilibrium PARETO-optimALITY STACKELBERG
下载PDF
基于Social Cognition粒子群算法多用户检测
10
作者 许耀华 胡艳军 《无线电通信技术》 2006年第6期30-32,38,共4页
最优多用户检测方法具有最优性能,但复杂度高,利用优化算法求解可以降低实现复杂度。粒子群算法是一种简单有效的新型群智能优化算法,研究了一种Socialcognition模型简化粒子群算法,并应用于大用户量CDMA多用户检测问题,主要考虑降低算... 最优多用户检测方法具有最优性能,但复杂度高,利用优化算法求解可以降低实现复杂度。粒子群算法是一种简单有效的新型群智能优化算法,研究了一种Socialcognition模型简化粒子群算法,并应用于大用户量CDMA多用户检测问题,主要考虑降低算法复杂度,提高算法的实现效率。分析及仿真表明该方法在系统用户数量较大时具有较好性能。 展开更多
关键词 码分多址 多用户检测 离散粒子群优化算法 社会认知理论
下载PDF
Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement
11
作者 赵彦超 吴杰 +1 位作者 李文中 陆桑璐 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第6期1290-1305,共16页
Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate t... Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme. 展开更多
关键词 cognitive radio network wireless mesh network throughput optimization centralized algorithm distributedalgorithm spectrum allocation
原文传递
基于坐标优化的FOA-Amorphous节点定位算法 被引量:1
12
作者 彭铎 张倩 +1 位作者 张腾飞 陈江旭 《计算机技术与发展》 2023年第7期91-97,共7页
节点的位置信息在无线传感器网络的定位中起着至关重要的作用,而Amorphous算法的节点定位精度低。针对影响Amorphous定位精度的主要原因分析,提出了一种基于坐标优化的FOA-Amorphous节点定位算法。首先,引入多通信半径的概念细化节点跳... 节点的位置信息在无线传感器网络的定位中起着至关重要的作用,而Amorphous算法的节点定位精度低。针对影响Amorphous定位精度的主要原因分析,提出了一种基于坐标优化的FOA-Amorphous节点定位算法。首先,引入多通信半径的概念细化节点跳数,利用网络平均连通度对节点的平均跳距进行重算;然后,以极大似然估计法得到的未知节点坐标值为果蝇优化算法中各果蝇的初始位置,通过此初始位置产生每个果蝇的初始种群,代入适应度函数求得当前果蝇的最佳位置,引入了个体认知因子c 1和群体引导因子c 2,优化了果蝇随机搜索的距离和方向,使得算法快速收敛到全局最优,避免算法早熟,提高了算法的收敛精度,通过迭代找到最佳未知节点位置坐标。与双通信半径算法、PSO-IDV-Hop算法以及Amorphous算法相比,该算法的归一化定位误差分别降低了约7%、23%和44%。 展开更多
关键词 Amorphous算法 坐标优化 多通信半径 果蝇优化算法 认知因子 引导因子
下载PDF
模糊认知图在时间序列预测中的应用综述 被引量:1
13
作者 秦墩旺 吴立锋 《小型微型计算机系统》 CSCD 北大核心 2023年第10期2314-2322,共9页
时间序列预测是基于当前及历史数据对未来演化趋势的推演.准确的、可解释的时间序列预测是进行科学决策的关键技术支撑,广泛应用于金融、交通、气象等诸多领域.具有可解释性和强推理能力的模糊认知图已在时间序列预测中取得较好的效果,... 时间序列预测是基于当前及历史数据对未来演化趋势的推演.准确的、可解释的时间序列预测是进行科学决策的关键技术支撑,广泛应用于金融、交通、气象等诸多领域.具有可解释性和强推理能力的模糊认知图已在时间序列预测中取得较好的效果,但目前尚无文献对该方法进行全面综述.为此,本文首先对模糊认知图及扩展的高阶模糊认知图、直觉模糊认知图和深度模糊认知图进行梳理,并在此基础上归纳了学习模糊认知图的优化算法.其次,具体介绍了模糊认知图以及扩展的模糊认知图在时间序列预测中的应用,并做出系统性的总结.最后,对模糊认知图在时间序列预测中的发展趋势进行展望. 展开更多
关键词 模糊认知图 可解释性 优化算法 时间序列预测
下载PDF
基于多尺度熵特征优化算法的MCI早期诊断及敏感脑区分析
14
作者 杨长杰 李昕 +3 位作者 侯永捷 王玉琳 刘沁爽 苏芮 《中国生物医学工程学报》 CAS CSCD 北大核心 2023年第3期274-280,共7页
轻度认知障碍(MCI)是阿尔兹海默病诊疗的关键时期,迫切需要早发现,早干预。针对MCI早期诊断问题,特别是早期诊断的敏感脑区定位问题,提出一种基于多尺度熵的脑电信号特征提取优化算法,即多尺度熵特征优化算法。该算法通过构建多重尺度序... 轻度认知障碍(MCI)是阿尔兹海默病诊疗的关键时期,迫切需要早发现,早干预。针对MCI早期诊断问题,特别是早期诊断的敏感脑区定位问题,提出一种基于多尺度熵的脑电信号特征提取优化算法,即多尺度熵特征优化算法。该算法通过构建多重尺度序列,并充分考虑各序列贡献程度,最大程度挖掘细节信息。共采集49名受试者临床脑电信号数据,其中实验组(MCI组)28名,正常对照组21名。对比分析实验组与对照组,MCI组16通道多尺度熵特征优化算法熵值均低于对照组,且前额叶、前颞叶以及中颞叶脑区具有显著性差异(P<0.01)。仅以此特征作为分类器输入特征,分析前额叶、前颞叶以及中颞叶3个脑区,其脑区诊断测试集识别率分别为83.33%、86.67%、73.33%。进一步,分析识别率最高的前颞叶两通道的AUC值分别为0.753与0.733。多尺度熵特征优化算法熵特征能够充分反应脑电信号变化,是可以作为MCI早期诊断的一种特征标记,前颞叶脑区可以为评估MCI患者脑认知功能状态的敏感脑区提供研究支持。 展开更多
关键词 多尺度熵特征优化算法 早期诊断 敏感脑区定位 轻度认知障碍
下载PDF
基于认知不确定可靠性的产品功能优化算法研究
15
作者 钟维宇 戴俨炯 +1 位作者 蔡敢为 柳林燕 《机械制造与自动化》 2023年第6期6-9,27,共5页
产品功能优化过程中包含大量不确定性功能需求及未知功能需求,构建基于认知不确定可靠性产品功能优化算法,进行产品总体功能分析、子功能概率化及可信度分配,从而在指定的概率选取满足一组约束的最优功能组合。以举高消防车为例,研究结... 产品功能优化过程中包含大量不确定性功能需求及未知功能需求,构建基于认知不确定可靠性产品功能优化算法,进行产品总体功能分析、子功能概率化及可信度分配,从而在指定的概率选取满足一组约束的最优功能组合。以举高消防车为例,研究结果表明:优化算法有助于精准化衡量产品功能不确定性并控制在客户需求的预期区间范围内,从而保证产品质量和可靠性。 展开更多
关键词 认知不确定 功能分析法 可靠性优化 优化算法
下载PDF
基于自适应Kriging模型的不确定可靠性功能优化算法研究
16
作者 钟维宇 胡霞 +1 位作者 蔡敢为 柳林燕 《计算技术与自动化》 2023年第3期79-84,共6页
产品研发中功能失效是一个复杂的系统性工程,失效过程包含大量不确定性因素。为此,构建了自适应Kriging的不确定可靠性功能优化算法,进行产品总体功能失效分析、认知集合可信任度、样本点的生成、自适应Kriging计算及优选功能组合,获取... 产品研发中功能失效是一个复杂的系统性工程,失效过程包含大量不确定性因素。为此,构建了自适应Kriging的不确定可靠性功能优化算法,进行产品总体功能失效分析、认知集合可信任度、样本点的生成、自适应Kriging计算及优选功能组合,获取在指定的概率约束下的最优解。以大数定律及极限定理为基础,保证了样本点在重要区域及Kriging模型的收敛条件。以工程机械储能系统为例,说明算法的迭代性、收敛性、准确性及稳定性。结果表明,该算法能够得出准确的敏感度,节省计算时间,提高计算效率。 展开更多
关键词 KRIGING模型 认知不确定 功能分析法 可靠性优化 优化算法
下载PDF
Parameter adjustment based on improved genetic algorithm for cognitive radio networks 被引量:2
17
作者 ZHAO Jun-hui LI Fei ZHANG Xue-xue 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2012年第3期22-26,共5页
Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization ... Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence. 展开更多
关键词 cognitive radio genetic algorithm global optimal solution linear scale transformation adaptive crossover and mutation probability
原文传递
改进蜉蝣算法求解认知车载网络频谱分配问题
18
作者 王岳 王乐 +1 位作者 孙文洋 李振国 《计算机工程与设计》 北大核心 2023年第10期3012-3020,共9页
针对传统认知车载网络频谱分配效率低、速度慢的问题,提出基于改进蜉蝣优化算法的频谱分配算法。以反向学习、动态惯性权重、多阶段动态扰动及正余弦优化交配机制提升标准蜉蝣优化算法的寻优性能;将频谱分配变量映射为蜉蝣个体位置信息... 针对传统认知车载网络频谱分配效率低、速度慢的问题,提出基于改进蜉蝣优化算法的频谱分配算法。以反向学习、动态惯性权重、多阶段动态扰动及正余弦优化交配机制提升标准蜉蝣优化算法的寻优性能;将频谱分配变量映射为蜉蝣个体位置信息,将网络吞吐量和接入公平性作为评估蜉蝣位置的适应度函数,利用改进蜉蝣算法搜索最优频谱分配方案。实验结果表明,改进算法的搜索精度和收敛速度都有所提升,能够更快得到频谱分配方案,车载用户收益和分配公平性方面也更有保障。 展开更多
关键词 蜉蝣优化算法 认知车载网络 频谱分配 反向学习 惯性权重 动态扰动 正余弦优化
下载PDF
基于两阶段模糊认知图的滚动轴承故障诊断方法
19
作者 曾祥菹 甘群丰 甘俊通 《机电工程》 CAS 北大核心 2023年第5期731-738,共8页
针对传统模糊认知图(FCMs)时间序列分类算法存在的对噪声敏感性不足和决策过程不透明等问题,提出了一种两阶段模糊认知图的方法(TFCMs),对滚动轴承故障进行了诊断。首先,利用模糊C-mean算法,将二维空间中存在的时间序列映射到C维空间;然... 针对传统模糊认知图(FCMs)时间序列分类算法存在的对噪声敏感性不足和决策过程不透明等问题,提出了一种两阶段模糊认知图的方法(TFCMs),对滚动轴承故障进行了诊断。首先,利用模糊C-mean算法,将二维空间中存在的时间序列映射到C维空间;然后,利用凸优化算法(CVX)快速、有效地从噪声数据中学习到FCMs模型;最后,利用粒子群算法(PSO)构建一个FCMs分类器对权重矩阵进行了有效的分类,并利用美国西储大学轴承数据集(CWRU)和时间序列分类基准数据对所提出的方法进行了验证。研究结果表明:凸优化算法对噪声数据特征的提取能力明显优于粒子群算法,在2个公开分类基准数据上的精度提高了4%;在2个轴承故障数据集中平均精度达到了99.5%以上;在对比实验中,TFCMs方法在数据集A和数据集B的精度分别提高了3.67%和2.36%,TFCMs方法优于现有的方法,更重要的是该方法的建模过程是透明且可解释的。 展开更多
关键词 轴承故障诊断 两阶段模糊认知图 时间序列分类 两阶段模型 粒子群算法 凸优化算法
下载PDF
非线性约束优化的算法分析 被引量:4
20
作者 郭庆军 李慧民 赛云秀 《计算机工程与应用》 CSCD 北大核心 2009年第19期198-200,242,共4页
针对非线性约束优化问题,运用了一种新的智能优化算法——社会认知优化算法。社会认知优化算法是一种基于社会认知理论的集群智能优化算法,它对目标函数的解析性质没有要求,适合于大规模约束问题处理的优点,使搜索不容易陷入局部最优。... 针对非线性约束优化问题,运用了一种新的智能优化算法——社会认知优化算法。社会认知优化算法是一种基于社会认知理论的集群智能优化算法,它对目标函数的解析性质没有要求,适合于大规模约束问题处理的优点,使搜索不容易陷入局部最优。将该算法引入非线性约束问题,解决优化问题。通过实例和其他算法进行比较,对比数值实验结果表明,即使只有一个学习主体,该算法能够高效、稳定地得到解决方案,便于求解非线性约束优化问题。 展开更多
关键词 社会认知算法 非线性约束优化 智能优化算法 社会认知理论
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部