This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi...The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.展开更多
Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a prom...Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.展开更多
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg...Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.展开更多
Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource all...Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource allocation in cognitive radio also has its own issues, such as the flexibility of the allocation algorithm, the performance of resource allocation, and so on. In order to increase the flexibility of the allocation algorithm for cognitive radio, more and more researches are focusing on the evolutionary algorithms, such as genetic algorithm(GA), particle swarm optimization(PSO). Evolutionary algorithm can greatly improve the flexibility of the allocation algorithm for cognitive radio system in different communication scenarios, but the performances are relatively lower than the original mathematical methods. So in this paper, we proposed an adaptive resource allocation algorithm based on modified PSO for cognitive radio system to solve these problems. Modified particle swarm optimization(Modified PSO) has both genetic algorithm(GA) and particle swarm optimization(PSO)’s updating processes which makes this modified PSO overcame PSO’s own disadvantages and keep advantages. Simulation results showed our proposed algorithm has enough flexibility to meet cognitive radio systems’ requirements, and also has a better performance than original PSO.展开更多
Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best asp...Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs.展开更多
In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Us...In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.展开更多
To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds...To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds of each sensing user are discussed. Theoretical analysis and simulation results indicate that the detection probability of optimal decision threshold rules is better than that of determined threshold rules when the false alarm of the fusion center is constant. The proposed optimal cooperative detection algorithm improves the detection performance of primary users as the attendees grow. The 2 dB gain of detection probability can be obtained when a new sensing user joins in, and there is a 17 dB improvement when the accumulation number increases from 1 to 50.展开更多
Recognizing the fact that a player’s cognition plays a defining role in the resulting equilibrium of a game of competition, this paper provides the foundation for a Nash game with forward-looking players by presentin...Recognizing the fact that a player’s cognition plays a defining role in the resulting equilibrium of a game of competition, this paper provides the foundation for a Nash game with forward-looking players by presenting a formal definition of the Nash game with consideration of the players’ belief. We use a simple two-firm model to demonstrate its fundamental difference from the standard Nash and Stackelberg games. Then we show that the players’ belief functions can be regarded as the optimization parameters for directing the game towards a much more desirable equilibrium.展开更多
Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate t...Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.展开更多
Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization ...Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.展开更多
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
基金funded by King Saud University,Riyadh,Saudi Arabia.Researchers Supporting Proiect Number(RSP2023R167)King Saud University,Riyadh,Saudi Arabia.
文摘The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:14-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by the Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.
基金National Natural Sci-ence Foundation of China(Grant Nos.61871241 and 61771263)Science and Technology Program of Nantong(Grant No.JC2019117).
文摘Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.
基金supported in part by the National Natural Sciences Foundation of China(NSFC)under Grant 61525103,the National Natural Sciences Foundation of China(NSFC)under Grant 61501140,the National Natural Sciences Foundation of China under Grant 61831008the Shenzhen Fundamental Research Project under Grant JCYJ20150930150304185+1 种基金the Guangdong Science and Technology Planning Project 2018B030322004in part by the Shenzhen Basic Research Program under Grant ZDSYS201707280903305
文摘Radio spectrum has become a rare resource due to the rapid development of wireless communication technique. Cognitive radio is one of important techniques to deal with this radio spectrum problem. But the resource allocation in cognitive radio also has its own issues, such as the flexibility of the allocation algorithm, the performance of resource allocation, and so on. In order to increase the flexibility of the allocation algorithm for cognitive radio, more and more researches are focusing on the evolutionary algorithms, such as genetic algorithm(GA), particle swarm optimization(PSO). Evolutionary algorithm can greatly improve the flexibility of the allocation algorithm for cognitive radio system in different communication scenarios, but the performances are relatively lower than the original mathematical methods. So in this paper, we proposed an adaptive resource allocation algorithm based on modified PSO for cognitive radio system to solve these problems. Modified particle swarm optimization(Modified PSO) has both genetic algorithm(GA) and particle swarm optimization(PSO)’s updating processes which makes this modified PSO overcame PSO’s own disadvantages and keep advantages. Simulation results showed our proposed algorithm has enough flexibility to meet cognitive radio systems’ requirements, and also has a better performance than original PSO.
基金This work was supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2016R1C1B1014069)in part by the National Research Foundation of Korea(NRF)funded by the Korea government(MIST)(No.2021R1A2C1013150).
文摘Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs.
文摘In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.
基金Sponsored by the National Basic Research Program of China(973 Program)(Grant No.2007CB310601)
文摘To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds of each sensing user are discussed. Theoretical analysis and simulation results indicate that the detection probability of optimal decision threshold rules is better than that of determined threshold rules when the false alarm of the fusion center is constant. The proposed optimal cooperative detection algorithm improves the detection performance of primary users as the attendees grow. The 2 dB gain of detection probability can be obtained when a new sensing user joins in, and there is a 17 dB improvement when the accumulation number increases from 1 to 50.
文摘Recognizing the fact that a player’s cognition plays a defining role in the resulting equilibrium of a game of competition, this paper provides the foundation for a Nash game with forward-looking players by presenting a formal definition of the Nash game with consideration of the players’ belief. We use a simple two-firm model to demonstrate its fundamental difference from the standard Nash and Stackelberg games. Then we show that the players’ belief functions can be regarded as the optimization parameters for directing the game towards a much more desirable equilibrium.
基金This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61373128, 91218302, 61321491, the Fundamental Research Funds for the Central Universities of China under Grant No. 20620140509, the EU FP7 IRSES MobileCloud Project under Grant No. 612212, and the Collaborative Innovation Center of Novel Software Technology and Industrialization of China.
文摘Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.
基金supported by the National Natural Science Foundation of China (61172073)National Key Special Program(2012ZX03003005)+1 种基金the State Key Laboratory of Rail Traffic Control and Safety (RCS2011ZT003)Beijing Jiaotong University and the Fundamental Research Funds for the Central Universities
文摘Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.