期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Does a combined intervention program of repetitive transcranial magnetic stimulation and intensive occupational therapy affect cognitive function in patients with post-stroke upper limb hemiparesis? 被引量:19
1
作者 Takatoshi Hara Masahiro Abo +2 位作者 Kiyohito Kakita Takeshi Masuda Ryunosuke Yamazaki 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1932-1939,共8页
Low-frequency repetitive transcranial magnetic stimulation(LF-r TMS) to the contralesional hemisphere and intensive occupational therapy(i OT) have been shown to contribute to a significant improvement in upper li... Low-frequency repetitive transcranial magnetic stimulation(LF-r TMS) to the contralesional hemisphere and intensive occupational therapy(i OT) have been shown to contribute to a significant improvement in upper limb hemiparesis in patients with chronic stroke. However, the effect of the combined intervention program of LF-r TMS and i OT on cognitive function is unknown. We retrospectively investigated whether the combined treatment influence patient's Trail-Making Test part B(TMT-B) performance, which is a group of easy and inexpensive neuropsychological tests that evaluate several cognitive functions. Twenty-five patients received 11 sessions of LF-r TMS to the contralesional hemisphere and 2 sessions of i OT per day over 15 successive days. Patients with right- and left-sided hemiparesis demonstrated significant improvements in upper limb motor function following the combined intervention program. Only patients with right-sided hemiparesis exhibited improved TMT-B performance following the combined intervention program, and there was a significant negative correlation between Fugl-Meyer Assessment scale total score change and TMT-B performance. The results indicate the possibility that LF-r TMS to the contralesional hemisphere combined with i OT improves the upper limb motor function and cognitive function of patients with right-sided hemiparesis. However, further studies are necessary to elucidate the mechanism of improved cognitive function. 展开更多
关键词 nerve regeneration stroke repetitive transcranial magnetic stimulation Trail-Making Test cognitive function occupational therapy neural regeneration
下载PDF
Learning tasks as a possible treatment for DNA lesions induced by oxidative stress in hippocampal neurons 被引量:7
2
作者 Dragos Cīrneci Radu Silaghi-Dumitrescu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第32期3063-3070,共8页
Reactive oxygen species have been implicated in conditions ranging from cardiovascular dysfunc- tion, arthritis, cancer, to aging and age-related disorders. The organism developed several path- ways to counteract thes... Reactive oxygen species have been implicated in conditions ranging from cardiovascular dysfunc- tion, arthritis, cancer, to aging and age-related disorders. The organism developed several path- ways to counteract these effects, with base excision repair being responsible for repairing one of the major base lesions (8-oxoG) in all organisms. Epidemiological evidence suggests that cognitive stimulation makes the brain more resilient to damage or degeneration. Recent studies have linked enriched environment to reduction of oxidative stressin neurons of mice with Alzheimer's dis- ease-like disease, but given its complexity it is not clear what specific aspect of enriched environ- ment has therapeutic effects. Studies from molecular biology have shown that the protein p300, which is a transcription co-activator required for consolidation of memories during specific learning tasks, is at the same time involved in DNA replication and repair, playing a central role in the long-patch pathway of base excision repair. Based on the evidence, we propose that learning tasks such as novel object recognition could be tested as possible methods of base excision repair fa- cilitation, hence inducing DNA repair in the hippocampal neurons. If this method proves to be effec- tive, it could be the start for designing similar tasks for humans, as a behavioral therapeutic com- plement to the classical drug-based therapy in treating neurodegenerative disorders. 展开更多
关键词 neural regeneration REVIEWS neurodegenerative disorder reactive oxygen species base excisionrepair cognitive stimulation P300 grants-supported paper neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部