期刊文献+
共找到3,267篇文章
< 1 2 164 >
每页显示 20 50 100
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
1
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 Refrigeration Cycle power Cycle System Performance Transcritical CO2 cycles Working Fluid
下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:1
2
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation thermo-economic analysis Multi-objective optimization Decision-making methods
下载PDF
Parametric Energy and Economic Analysis ofModified Combined Cycle Power Plant with Vapor Absorption and Organic Rankine Cycle
3
作者 Abdul Moiz Malik Shahzaib +2 位作者 Abdul Ghafoor Memon Laveet Kumar Mamdouh El Haj Assad 《Energy Engineering》 EI 2024年第11期3095-3120,共26页
To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal Intern... To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal International Organization for Standardization(ISO)conditions but face challenges during summer when ambient temperatures reach 40℃.To enhance performance,the proposal suggests cooling inlet air by 15℃using a vapor absorption chiller(VAC),utilizing residual exhaust gases from a combined cycle power plant(CCPP)to maximize power output.Additionally,diverting a portion of exhaust gases to drive an organic Rankine cycle(ORC)for supplementary power generation offers added efficiency.This integrated approach not only boosts power output but alsominimizes environmental impact by repurposing exhaust gases for additional operations.This study presents a detailed energy and economic analysis of a modified combine cycle power plant,in Kotri,Pakistan.R600A is used as organic fuel for the ORC while LiBr-H2O solution is used for the VAC.Two performance parameters,efficiency and energy utilization factor,Four energetic parameters,Work output of ORC,modified CCPP,original CCPP and cooling rate,and one economics parameter,payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine(ψ).A parametric investigation was conducted within the temperature range of 18℃to 50℃,relative humidity between 70%and 90%,and theψranging from 0 to 0.3.The findings reveal that under elevated ambient conditions(40℃,90%humidity)withψat 0,the Energy Utilization Factor(EUF)exceeds 60%.However,the ORC exhibits a low work output of 100KWalongside a high cooling load of 29,000 kW.Conversely,the modified system demonstrates an augmented work output of approximately 81,850 KWcompared to the original system’s 78,500KW.Furthermore,the integration of this systemproves advantageous across all metrics.Additionally,the payback period of the system is contingent on ambient conditions,with lower conditions correlating to shorter payback periods and vice versa. 展开更多
关键词 Combined cycle power plant vapor absorption chiller organic Rankine cycle
下载PDF
Effect of dry-wet cycles on dynamic properties and microstructures of sandstone:Experiments and modelling
4
作者 Hai Pu Qingyu Yi +3 位作者 Andrey P.Jivkov Zhengfu Bian Weiqiang Chen Jiangyu Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期655-679,共25页
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi... Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields. 展开更多
关键词 Underground pumped storage power plant Dry-wet cycles Split Hopkinson pressure bar Macro and micro properties FEM-DEM coupling model Damage characterization
下载PDF
Thermodynamic analysis of simplified dual-pressure ammonia-water absorption power cycle 被引量:5
5
作者 华君叶 陈亚平 +1 位作者 刘化瑾 吴嘉峰 《Journal of Central South University》 SCIE EI CAS 2012年第3期797-802,共6页
A simplified dual-pressure ammonia-water absorption power cycle(DPAPC-a) using low grade energy resources is presented and analyzed.This cycle uses turbine exhaust heat to distill the basic solution for desorption.The... A simplified dual-pressure ammonia-water absorption power cycle(DPAPC-a) using low grade energy resources is presented and analyzed.This cycle uses turbine exhaust heat to distill the basic solution for desorption.The structure of the cycle is simple which comprises evaporator,turbine,regenerator(desorber),absorber,pump and throttle valves for both diluted solution and vapor.And it is of high efficiency,because the working medium has large temperature difference in evaporation and small temperature difference in absorptive condensation,which can match the sensible exothermal heat resource and the cooling water simultaneously.Orthogonal calculation was made to investigate the influence of the working concentration,the basic concentration and the circulation multiple on the cycle performance,with 85-110 ℃ heat resource and 20-32 ℃ cooling water.An optimum scheme was given in the condition of 110 ℃ sensitive heat resource and 20 ℃ cooling water,with the working concentration of 0.6,basic concentration of 0.385,and circulation multiple of 5.The thermal efficiency and the power recovery efficiency are 8.06 % and 6.66%,respectively.The power recovery efficiency of the DPAPC-a is 28.8% higher than that of the steam Rankine cycle(SRC) and 12.7% higher than that of ORC(R134a) under the optimized situation. 展开更多
关键词 absorption power cycle AMMONIA-WATER circulation multiple ammonia concentration Kalina cycle
下载PDF
Performance analysis and improvement of geothermal binary cycle power plant in oilfield 被引量:4
6
作者 李太禄 朱家玲 张伟 《Journal of Central South University》 SCIE EI CAS 2013年第2期457-465,共9页
In order to improve the efficiency of a geothermal power plant, oil wells in the high water cut stage were used as geothermal wells, thereby improving the recovery ratio and economic benefit. A new function that refle... In order to improve the efficiency of a geothermal power plant, oil wells in the high water cut stage were used as geothermal wells, thereby improving the recovery ratio and economic benefit. A new function that reflects both the technical and economic performances was put forward and used as the objective function. An organic Rankine cycle (ORC) was analyzed through the energetic and exergetic analyses, and the reasons for low efficiency were pinpointed. Results indicate that geothermal water directly transferring heat to the working fluid reduces energy dissipation and increases cycle efficiencies. The net power output with an internal heat exchanger (IHE) is averagely 5.3% higher than that without an IHE. R601a and R601 can be used to replace R123 for geothermal water below 110℃. Moreover, the modified ORC dramatically outperforms the actual one. 展开更多
关键词 geothermal power generation organic Rankine cycle energetic and exergetic analyses OILFIELD internal heat exchanger
下载PDF
Coupling effect of evaporation and condensation processes of organic Rankine cycle for geothermal power generation improvement 被引量:4
7
作者 YANG Hua MENG Nan LI Tai-lu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3372-3387,共16页
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th... Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output. 展开更多
关键词 Organic Rankine cycle geothermal power generation coupling effect of evaporation and condensation exergy analysis
下载PDF
Simulation realization of skip cycle mode integrated control circuit in the switching power supply with low standby loss 被引量:2
8
作者 屈艾文 程东方 冯旭 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期318-322,共5页
This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V proces... This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load. 展开更多
关键词 standby loss skip cycle mode (SCM) switching mode power supply (SMPS) integrated control circuit.
下载PDF
The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin,Qinghai Province,China 被引量:10
9
作者 Er-yong Zhang Dong-guang Wen +39 位作者 Gui-ling Wang Wei-de Yan Wen-shi Wang Cheng-ming Ye Xu-feng Li Huang Wang Xian-chun Tang Wei Weng Kuan Li Chong-yuan Zhang Ming-xing Liang Hong-bao Luo Han-yue Hu Wei Zhang Sen-qi Zhang Xian-peng Jin Hai-dong Wu Lin-you Zhang Qing-da Feng Jing-yu Xie Dan Wang Yun-chao He Yue-wei Wang Zu-bin Chen Zheng-pu Cheng Wei-feng Luo Yi Yang Hao Zhang En-lai Zha Yu-lie Gong Yu Zheng Chang-sheng Jiang Sheng-sheng Zhang Xue Niu Hui Zhang Li-sha Hu Gui-lin Zhu Wen-hao Xu Zhao-xuan Niu Li Yang 《China Geology》 CAS 2022年第3期372-382,共11页
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to... Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future. 展开更多
关键词 Hot dry rock Directional drilling Reservoir stimulation Microseismic monitoring Organic Rankine cycle(ORC) power generation test Energy geological survey engineering Gonghe Basin Qinghai Province China
下载PDF
Remnants of an Powerful Ancient “Dynasty”:Material Cycle and Biomineralization in Modern Seafloor Hydrothermal System 被引量:1
10
作者 SUN Zhilei CAO Hong +1 位作者 ZOU Mingliang ZHANG Xilin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2287-2288,共2页
The origin of ancient banded iron formation (BIF) has remained unclear for a long time. How the precipitation process occurred and what the environmental condition was have been widely discussed among scientists, be... The origin of ancient banded iron formation (BIF) has remained unclear for a long time. How the precipitation process occurred and what the environmental condition was have been widely discussed among scientists, because the period when the major BIFs deposited (-2.8 to 1.8Ga) is the same time when biosphere and atmosphere significantly changed. Based on the discovery of modern seafloor hydrothermal vents, it is possible that reductive environment controlled by vent system is related to the environment where BIF was deposited. According to matter source. 展开更多
关键词 Remnants of an powerful Ancient DYNASTY Material Cycle and Biomineralization in Modern Seafloor Hydrothermal System
下载PDF
Demonstration of Pilot Scale Large Aperture Parabolic Trough Organic Rankine Cycle Solar Thermal Power Plant in Louisiana
11
作者 Jonathan R. Raush Terrence L. Chambers +1 位作者 Ben Russo Kenneth A. Ritter III 《Journal of Power and Energy Engineering》 2013年第7期29-39,共11页
During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the f... During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the first time in Louisiana. The large aperture trough (LAT) solar collectors were provided by Gossamer Space Frames and are coupled with an organic Rankine cycle (ORC) power block provided by ElectraTherm, Inc. for study of the feasibility of cost-effective commercial scale solar thermal power production in Louisiana. Supported by CLECO and providing power to the existing CLECO grid, the implementation of state-of-the-industry collector frames, mirrors, trackers, and ORC power block is studied under various local weather conditions which present varied operating regimes from existing solar thermal installations. The solar collectors provide a design output of 650 kWth and preliminary actual performance data from the system level is presented. The optimal size, configuration and location for such a plant in the given solar resource region are being studied in conjunction with CLECO’s search for optimal renewable energy solutions for the region. The pilot scale size of the facility and implementation of the simpler ORC allow remote operation of the facility and flexibility in operating parameters for optimization studies. The construction of the facility was supported by the Louisiana Department of Natural Resources, the U.S. Department of Energy, and CLECO. The continued operation of the plant is supported by CLECO Power LLC and the University of Louisiana at Lafayette. 展开更多
关键词 CONCENTRATING SOLAR power PARABOLIC TROUGH SOLAR thermal Organic Rankine Cycle power Plant
下载PDF
Thermo-economic Investigation of an Enhanced Geothermal System Organic Rankine Cycle and Combined Heating and Power System
12
作者 WANG Lingbao BU Xianbiao LI Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1958-1966,共9页
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon... As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%. 展开更多
关键词 enhanced geothermal system organic Rankine cycle combined heating and power system thermo-economic investigation carbon emission reduction
下载PDF
Application of Combined Cycle in Modernized Retrofit of Old Thermal Power Plants
13
作者 Jia Nansong Liu Dongyuan Longyuan Electric Power Group Corporation 《Electricity》 2000年第2期37-41,共5页
This article expounds the advantages and three schemes of applying combined cycle to the modernized retrofit of old thermal power plants. Through analyzing and comparing technical economics of these three schemes, it ... This article expounds the advantages and three schemes of applying combined cycle to the modernized retrofit of old thermal power plants. Through analyzing and comparing technical economics of these three schemes, it is concluded that to use feedwater heating and heat recovery steam generator (HRSG) is suitable for the units with unit capacity below 100 MW, while to use exhaust gas reburning is suitable for units with unit capacity of 125 MW, 200 MW and above. 展开更多
关键词 combined CYCLE RETRofIT of OLD thermal power PLANTS analysis of TECHNICAL ECONOMY
下载PDF
Evaluating the Technical and Economic Feasibility of Adding a Power Recovery System to the Steam Condenser of a Lignite Coal-Fired Power Plant
14
作者 Joshua Wilmer Wayne Seames +4 位作者 Dimitri Bazile Kay Lee Smith Benjamin Koster Grady Mauch Lucas Weimer 《Journal of Power and Energy Engineering》 2022年第11期16-34,共19页
Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery ... Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery Cycle (PRC) using a more volatile Secondary Working Fluid (SWF) added to the steam cycle could improve energy efficiency. PRCs have been applied to the flue gas and for combined cycle systems but not to traditional plant steam cycles. This paper details an analysis of adding a steam cycle PRC to a 500 MW lignite coal-fired power plant. A validated model of the plant was developed and PRCs using the three most attractive SWFs, benzene, methanol and hydrazine, were then added to the model. Adding a benzene, methanol, or hydrazine steam cycle PRC will produce an additional 59, 34, and 49 MW, respectively. An AACE Class 4 factored broad capital cost estimate and comparable operating costs and revenue estimates were developed to evaluate PRC feasibility. The benzene, methanol, and hydrazine processes had 2019 Net Present Values (NPVs) @12% of -$32, -$59, and +$35 million ± 40%, respectively. Thus, a PRC may be profitable at current or modest increases to U.S. Upper Midwest electricity prices of around $0.0667/kWh. 展开更多
关键词 Lignite Coal Heat Recovery power Plant Organic Rankine Cycle Bottoming Cycle
下载PDF
Nuclear Explosion Fusion Power Plant——the Hope of the Mankind Future Energy
15
作者 Peng Xianjue,Liu Chengan,Chen Yinliang,Guo Qin,Yin Wenhua,Bai Yun,Chen Xiaowei,Qu Ming(China Academy of Engineering Physics,Mianyang Sichuan 621900,China) 《工程科学(英文版)》 2007年第4期10-19,共10页
In this article,the basic concept,constitute and brief development history of Nuclear Explosions Fusion Power Plant is introduced.A series of technique is put forward to solve the implement safety of nuclear explosion... In this article,the basic concept,constitute and brief development history of Nuclear Explosions Fusion Power Plant is introduced.A series of technique is put forward to solve the implement safety of nuclear explosion;the designs of nuclear devicein deuterium-type and the reclamation of nuclear fuel are put forward.The technique possibility of power station is analyzed,and the prospect of all kinds of nuclear energy project to provide energy of the mankind future are compared. 展开更多
关键词 snuclear explosion fusion power plant explosion cavity spray Na burn-deuterium-type NUCLEAR installation NUCLEAR fuel CYCLE
下载PDF
Nuclear Power in the Fuel and Energy Complex of Ukraine
16
作者 V. Andriychuk 《Journal of Energy and Power Engineering》 2011年第12期1126-1133,共8页
Nuclear power is a powerful and effective energy branch in Ukraine. There are currently 4 active nuclear power stations (NPS) and 13 operational VVER energy units, producing a total power of 11880 MW, in the country... Nuclear power is a powerful and effective energy branch in Ukraine. There are currently 4 active nuclear power stations (NPS) and 13 operational VVER energy units, producing a total power of 11880 MW, in the country. According to the data collected from the International Agency of Nuclear-Power Energy, Ukraine is in seventh place for the largest supply of uranium on the planet. The use of nuclear power in Ukraine includes: extraction and processing uranium ore, production of UF6, production of zirconia rental and purveyances from a zirconia alloy, production of heat-radiating collections, storage of exhaust nuclear fuel and nuclear wastes. The realisation of uranium isotopic enrichment is the main problem in the structure of organisation in nuclear fuel production in Ukraine. This country has a unique station, non-operative Chemobyl NPS, where different types of wastes are located. Two factories are currently being built there in order to process the liquid and solid radio-active wastes. In perspective, Ukrainian nuclear-power energy will be enriched with new nuclear-power units and security systems to ensure safe manufacturing. 展开更多
关键词 Nuclear power URANIUM ZIRCONIUM fuel wastes LONGEVITY nuclear fuel cycle chemobyl Ukraine
下载PDF
Analysis on the time variation and cycle of observed Argo profile data
17
作者 张胜茂 伍玉梅 杨胜龙 《Marine Science Bulletin》 2012年第1期16-27,共12页
The remote sensing data which are used by marine fishery forecast only can get the information of ocean surface, while Argo data can provide fishery forecast with temperature and saltinity data of deeper area. To use ... The remote sensing data which are used by marine fishery forecast only can get the information of ocean surface, while Argo data can provide fishery forecast with temperature and saltinity data of deeper area. To use Argo data in cycle, we need to compute its circle to improve the quality of forecast. In 2001- 2008, the longer circle was 62.7 days and 117.5 days, and the shorter circle was 4.9 days and 9.8 days, which were obtained by power spectrum estimation. And there was an unobvious circle of 7 days. There existed big changes in observed profile data amount between years and within a year. 展开更多
关键词 ARGO CYCLE power Spectrum Estimate Fourier transform
下载PDF
Model Selection of Gas Turbine for Large Scale Gas-Fired Combined Cycle Power Plant
18
作者 何语平 《Electricity》 2003年第4期36-39,共4页
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr... This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies. 展开更多
关键词 natural gas combined cycle power plant unit model selection
下载PDF
Simulation and performance analysis of organic Rankine cycle combined heat and power system
19
作者 刘玉兰 曹政 +1 位作者 陈九法 熊健 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期489-495,共7页
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state.... To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC. 展开更多
关键词 organic Rankine cycle combined heat and power cycle efficiency exergy efficiency thermal efficiency
下载PDF
Research on power-supply cost of regional power system under carbon-peak target 被引量:4
20
作者 Jingyi Wang Min Cang +3 位作者 Xiaomeng Zhai Shuang Wu Xi Cheng Lei Zhu 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期31-43,共13页
With the establishment of the carbon-peak target by 2030,the direction of carbon emission reduction in China’s energy system has been further clarified.As the industry with the largest proportion of carbon emissions ... With the establishment of the carbon-peak target by 2030,the direction of carbon emission reduction in China’s energy system has been further clarified.As the industry with the largest proportion of carbon emissions in China,the lowcarbon transformation of the electric power industry is critical to realize the carbon-peak target.Current research mostly focuses on technical analysis or system cost accounting of the carbon-peak realization path at the national level.There is a lack of targeted research on regional power systems with complex inter-regional power flow exchange and limited energy resource development.Simultaneously,the calculation of the system cost lacks the perspective of the life cycle and ignores the inertia of the stock and change inertia of incremental disturbance.From the perspective of the life cycle,this study proposes a calculation model of power supply cost for regional power systems according to the carbon-peak target,analyzes the realization path of the carbon target from an economic perspective,and provides references for the path selection and policy formulation of system transformation. 展开更多
关键词 Carbon peak power system Renewable energy sources System cost Life cycle
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部