Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
Composite structures consisting of two-dimensional(2D)materials deposited on elastic substrates have a wide range of potential applications in flexible electronics.For such devices,robust 2D film/substrate interfacial...Composite structures consisting of two-dimensional(2D)materials deposited on elastic substrates have a wide range of potential applications in flexible electronics.For such devices,robust 2D film/substrate interfacial adhesion is essential for their reliable performance when subjected to external thermal and mechanical loads.To better understand the strength and failure behavior of the 2D film/substrate interfaces,two types of graphene/polymer samples with distinct interfacial adhesion properties are fabricated and tested by uniaxially stretching the substrates.Depending on the interfacial adhesion,two drastically different debonding rates are observed,i.e.,rapid snap-through debonding and more progressive crack propagation.Motivated by the experimental observation,we propose an improved shear-lag model with a trapezoidal-shaped cohesive zone to derive an analytical solution for the decohesion behavior.The theoretical model reveals that the decohesion behavior of the frictional adhesive interface is governed by three dimensionless parameters.Particularly,the dimensionless length of the film essentially determines the decohesion rate;while the other two parameters affect the critical substrate strain to initiate debonding.By fitting the experimental data with the theoretical model,the intrinsic adhesion properties of the two samples are obtained with physically meaningful values.This work offers an analytical solution to describing the decohesion behavior of general thin film/substrate systems with a frictional adhesive interface,which is beneficial for characterizing and optimizing the mechanical properties of various thin film/polymer devices.展开更多
Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deforma...Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deformation characteristics,making it difficult to accurately analyze the strengthened structure’s failure mechanism.In this study,interfacial fracture mechanics of composite material was applied to the segmental tunnel lining strengthened with steel plates,and a numerical three-dimensional solid nonlinear model of the lining structure was established,combining the extended finite element method with a cohesive-zone model to account for the discontinuous deformation characteristics of the interface.The results accurately describe the crack propagation process,and are verified by full-scale testing.Next,dynamic simulations based on the calibrated model were conducted to analyze the sliding failure and cracking of the steel-concrete interface.Lastly,detailed location of the interface bonding failure are further verified by model test.The results show that,the cracking failure and bond failure of the interface are the decisive factors determining the instability and failure of the strengthened structure.The proposed numerical analysis is a major step forward in revealing the interface failure mechanism of strengthened composite material structures.展开更多
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.
基金the National Natural Science Foundation of China(Nos.12025203,11921002,and 11890671)the National Key R&D Program of China(No.2022YFF0706100)the Initiative Program of State Key Laboratory of Tribology in Advanced Equipment(No.SKLT2022A01).
文摘Composite structures consisting of two-dimensional(2D)materials deposited on elastic substrates have a wide range of potential applications in flexible electronics.For such devices,robust 2D film/substrate interfacial adhesion is essential for their reliable performance when subjected to external thermal and mechanical loads.To better understand the strength and failure behavior of the 2D film/substrate interfaces,two types of graphene/polymer samples with distinct interfacial adhesion properties are fabricated and tested by uniaxially stretching the substrates.Depending on the interfacial adhesion,two drastically different debonding rates are observed,i.e.,rapid snap-through debonding and more progressive crack propagation.Motivated by the experimental observation,we propose an improved shear-lag model with a trapezoidal-shaped cohesive zone to derive an analytical solution for the decohesion behavior.The theoretical model reveals that the decohesion behavior of the frictional adhesive interface is governed by three dimensionless parameters.Particularly,the dimensionless length of the film essentially determines the decohesion rate;while the other two parameters affect the critical substrate strain to initiate debonding.By fitting the experimental data with the theoretical model,the intrinsic adhesion properties of the two samples are obtained with physically meaningful values.This work offers an analytical solution to describing the decohesion behavior of general thin film/substrate systems with a frictional adhesive interface,which is beneficial for characterizing and optimizing the mechanical properties of various thin film/polymer devices.
基金the financial support provided by the National Key Basic Research Program of China(No.2015CB057801)the Projects of the Construction Department of Zhejiang Province(Nos.2022K073 and 2022K169).
文摘Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deformation characteristics,making it difficult to accurately analyze the strengthened structure’s failure mechanism.In this study,interfacial fracture mechanics of composite material was applied to the segmental tunnel lining strengthened with steel plates,and a numerical three-dimensional solid nonlinear model of the lining structure was established,combining the extended finite element method with a cohesive-zone model to account for the discontinuous deformation characteristics of the interface.The results accurately describe the crack propagation process,and are verified by full-scale testing.Next,dynamic simulations based on the calibrated model were conducted to analyze the sliding failure and cracking of the steel-concrete interface.Lastly,detailed location of the interface bonding failure are further verified by model test.The results show that,the cracking failure and bond failure of the interface are the decisive factors determining the instability and failure of the strengthened structure.The proposed numerical analysis is a major step forward in revealing the interface failure mechanism of strengthened composite material structures.