The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast s...Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer.展开更多
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th...This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%.展开更多
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun...This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution.展开更多
On the basis of tests and studies for many years, wheat cold source has been discovered in natural world. It is a donor material supplying a low temperature and causing stronger cooling effect, that is, the canopy tem...On the basis of tests and studies for many years, wheat cold source has been discovered in natural world. It is a donor material supplying a low temperature and causing stronger cooling effect, that is, the canopy temperature of its progeny can be descended universally and some non-cold type acceptor wheat can turn into cold type wheat having good metabolic functions under the condition of that acceptor wheat accepts the gamete of donor wheat supplying a low temperature. Contrast between wheat cold source and general wheat having no the ability of supplying a low temperature shows that second heat source temperature and plant temperature of wheat cold source not only are lower than those of general wheat but its root vigor, rate of awn etiolation, functional duration of leaf, chlorophyll content, soluble protein content, SOD activity, net photosynthetic rate, etc, are also more excellent than those of general wheat, and these all provide certain ecological and physiological bases for the distinction and selection of wheat cold source.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variat...Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments.展开更多
In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations...In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces.展开更多
The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized pl...The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized plasma is extended in the presence of an ion–neutral collisional force and ionization source. The effects of electron nonextensive distribution, ionization frequency, ion–neutral collision, magnetic field angle and ion temperature on the Bohm criterion of the plasma sheath are numerically analyzed. The fluid equations are solved numerically in the plasma–wall transition region using a modified Bohm criterion as the boundary condition. The plasma sheath properties such as charged particle density, floating sheath potential and thickness are thoroughly investigated under different kinds of ion source terms, contributions of collisions, and magnetic fields. The results show that the effect of the ion source term on the properties of atmosphericpressure collisional plasma sheath is significant. As the ionization frequency increases, the Mach number of the Bohm criterion decreases and the range of possible values narrows. When the ion source is considered, the space charge density increases, the sheath potential drops more rapidly,and the sheath thickness becomes narrower. In addition, ion–neutral collision, magnetic field angle and ion temperature also significantly affect the sheath potential profile and sheath thickness.展开更多
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method...In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.展开更多
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to ...Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of thepulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are oftenavailable for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete datamay introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction methodusing cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. Weaugment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have beencarried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns betweenadjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstructionresults and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.展开更多
Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove ...Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove regional trends. Major similarities in magnetic field orientation and intensities were observed at identical locations on both the regional and TMI data grids. From the regional and TMI gridded datasets, the residual dataset was generated which represents the very shallow geological features of the basin. Processing this residual data grid using the Source Parameter Imaging (SPI) for magnetic depth suggests that the estimated depths to magnetic sources in the basin range from about 271 m to 3552 m. The highest depths are located in two main locations somewhere around the central portion of the study area which correspond to the area with positive magnetic susceptibilities, as well as the areas extending outwards across the eastern boundary of the study area. Shallow magnetic depths are prominent towards the NW portion of the basin and also correspond to areas of negative magnetic susceptibilities. The basin generally exhibits a variation in depth of magnetic sources with high, average and shallow depths. The presence of intrusive igneous rocks was also observed in this basin. This characteristic is a pointer to the existence of geologic resources of interest for exploration in the basin.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.42192562 and 42030605)。
文摘Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer.
基金This work was supported by Tianjin Natural Science Foundation(No.21JCZDJC00750).
文摘This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%.
文摘This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution.
基金the National Nature Science Foundation of China (No. 39870477,30070150).
文摘On the basis of tests and studies for many years, wheat cold source has been discovered in natural world. It is a donor material supplying a low temperature and causing stronger cooling effect, that is, the canopy temperature of its progeny can be descended universally and some non-cold type acceptor wheat can turn into cold type wheat having good metabolic functions under the condition of that acceptor wheat accepts the gamete of donor wheat supplying a low temperature. Contrast between wheat cold source and general wheat having no the ability of supplying a low temperature shows that second heat source temperature and plant temperature of wheat cold source not only are lower than those of general wheat but its root vigor, rate of awn etiolation, functional duration of leaf, chlorophyll content, soluble protein content, SOD activity, net photosynthetic rate, etc, are also more excellent than those of general wheat, and these all provide certain ecological and physiological bases for the distinction and selection of wheat cold source.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42030603)the Natural Science Foundation of Yunnan Province(2019FY003006)the Postgraduate Research and Innovation foundation of Yunnan University(2021Z017).
文摘Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments.
基金supported by the National Natural Science Foundation of China (51874281)the Graduate Innovation Program of China University of Mining and Technology (2022WLKXJ006)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX22_2612).
文摘In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces.
基金supported by National Natural Science Foundation of China(Nos.11975062,11605021 and 11975088)the China Postdoctoral Science Foundation(No.2017M621120)。
文摘The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized plasma is extended in the presence of an ion–neutral collisional force and ionization source. The effects of electron nonextensive distribution, ionization frequency, ion–neutral collision, magnetic field angle and ion temperature on the Bohm criterion of the plasma sheath are numerically analyzed. The fluid equations are solved numerically in the plasma–wall transition region using a modified Bohm criterion as the boundary condition. The plasma sheath properties such as charged particle density, floating sheath potential and thickness are thoroughly investigated under different kinds of ion source terms, contributions of collisions, and magnetic fields. The results show that the effect of the ion source term on the properties of atmosphericpressure collisional plasma sheath is significant. As the ionization frequency increases, the Mach number of the Bohm criterion decreases and the range of possible values narrows. When the ion source is considered, the space charge density increases, the sheath potential drops more rapidly,and the sheath thickness becomes narrower. In addition, ion–neutral collision, magnetic field angle and ion temperature also significantly affect the sheath potential profile and sheath thickness.
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金supported by the National Natural Science Foundation of China(62073093)the initiation fund for postdoctoral research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F017).
文摘In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
基金supported partially by a grant from NNSFC No.12027811.
文摘Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of thepulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are oftenavailable for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete datamay introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction methodusing cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. Weaugment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have beencarried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns betweenadjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstructionresults and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.
文摘Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove regional trends. Major similarities in magnetic field orientation and intensities were observed at identical locations on both the regional and TMI data grids. From the regional and TMI gridded datasets, the residual dataset was generated which represents the very shallow geological features of the basin. Processing this residual data grid using the Source Parameter Imaging (SPI) for magnetic depth suggests that the estimated depths to magnetic sources in the basin range from about 271 m to 3552 m. The highest depths are located in two main locations somewhere around the central portion of the study area which correspond to the area with positive magnetic susceptibilities, as well as the areas extending outwards across the eastern boundary of the study area. Shallow magnetic depths are prominent towards the NW portion of the basin and also correspond to areas of negative magnetic susceptibilities. The basin generally exhibits a variation in depth of magnetic sources with high, average and shallow depths. The presence of intrusive igneous rocks was also observed in this basin. This characteristic is a pointer to the existence of geologic resources of interest for exploration in the basin.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.