FEM is used to analyze the influence of interface friction on the material flow and the cause of forming defect in the cold upsetting of tube flange. Based on the FEM simulation results, the relationships between flan...FEM is used to analyze the influence of interface friction on the material flow and the cause of forming defect in the cold upsetting of tube flange. Based on the FEM simulation results, the relationships between flange width and the extreme friction factors are established. The concept of forming limit diagram for cold upsetting of tube flange is presented.展开更多
Cold upsetting experiments were carried out on sintered Fe 0.8%C1.0%Si-0. 4%Cu steel preforms in order to evaluate their deformation characteristics. Powder preforms of 86 % of theoretical density, with two different ...Cold upsetting experiments were carried out on sintered Fe 0.8%C1.0%Si-0. 4%Cu steel preforms in order to evaluate their deformation characteristics. Powder preforms of 86 % of theoretical density, with two different ratios of height to diameter, were prepared using a suitable die set assembly on a 1.0 MN capacity hydraulic testing machine. Sintering was carried out in an electric muffle furnace for 1.5 h at 1 150 ℃. Each sintered compact was subjected to incremental loading of 0.04 MN under dry friction condition till a crack appeared at the free surfaces. The experimental results were critically analysed, the stress as a function of strain and densification was obtained, then the work hardening behaviour was analyzed. It has been found that in the process of enhancing densification, strength and strain hardening is also induced during upsetting, but the work hardening behaviour is not homogenously enhanced against strain and densification.展开更多
The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the ...The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.展开更多
Aluminium-based metal matrix composites were synthesized from Al-TiO2-Gr powder mixtures using the powder metallurgy technique and their forming characteristics were studied during cold upsetting. Green cylindrical co...Aluminium-based metal matrix composites were synthesized from Al-TiO2-Gr powder mixtures using the powder metallurgy technique and their forming characteristics were studied during cold upsetting. Green cylindrical compacts of pure Al, Al-5wt%TiO2, Al-5wt%TiO2-2wt%Gr, and Al-5wt%TiO2-4wt%Gr were made using a 400-kN hydraulic press equipped with suitable punch and die and by sintering at (590 ± 10)°C for 3 h. Cold upset forging tests were carried out, the true axial stress (σz), the true hoop stress (σ?), and the true hy-drostatic stress (σm) were evaluated and, their behavior against the true axial strain (εz) was also analyzed. It is observed that the addition of 5wt%TiO2 into the Al matrix increasesσz,σ?, andσm. The addition of both TiO2 and Gr reinforcements reduces the densification and defor-mation characteristics of the sintered preforms during cold upsetting. Microstructure analyses of the as-sintered and cold upset forged speci-mens also were carried out to substantiate the experimental results.展开更多
The cold upsetting studies were carried out for the aluminium metal matrix hybrid composites in the present study. Aluminium metal matrix hybrid composites were synthesised through powder metallurgy route from ball-mi...The cold upsetting studies were carried out for the aluminium metal matrix hybrid composites in the present study. Aluminium metal matrix hybrid composites were synthesised through powder metallurgy route from ball-milled powders to yield the following compositions:Al + 2.5 wt% TiO2+ 2 wt% Gr, Al + 2.5 wt% TiO2+ 4 wt% Gr, Al + 5.0 wt% TiO2+ 2 wt% Gr and Al + 5.0 wt% TiO2+ 4 wt% Gr. The compaction process was carried out using suitable punch and die in 40 k N hydraulic press, and sintering was done in an electric muffle furnace at the temperature of 590 °C for 3 h. The sintered preforms were subjected to incremental compressive loading of 10 k N until the cracks were found at the free surface. The true axial stress, true hoop stress, true hydrostatic stress and true effective stress were calculated for all the preforms, and all these stresses are correlated with the true axial strain. The stress ratio parameters(rz/reff, rh/reff, rz/rmand rh/rm) of the all preforms were correlated with true axial strain. The maximum true axial stress, true hoop stress, true effective stress and hydrostatic static stress are obtained for the composite containing5 wt% of TiO2 and 4 wt% of graphite and the minimum ones are obtained for composite containing 2.5 wt% of TiO2 and 2 wt% of graphite.展开更多
基金This bark wu suPPorted w suPPorted by the Nabnonal Key Laboratory of Precision HOt Processing of Metals Foundation of China
文摘FEM is used to analyze the influence of interface friction on the material flow and the cause of forming defect in the cold upsetting of tube flange. Based on the FEM simulation results, the relationships between flange width and the extreme friction factors are established. The concept of forming limit diagram for cold upsetting of tube flange is presented.
文摘Cold upsetting experiments were carried out on sintered Fe 0.8%C1.0%Si-0. 4%Cu steel preforms in order to evaluate their deformation characteristics. Powder preforms of 86 % of theoretical density, with two different ratios of height to diameter, were prepared using a suitable die set assembly on a 1.0 MN capacity hydraulic testing machine. Sintering was carried out in an electric muffle furnace for 1.5 h at 1 150 ℃. Each sintered compact was subjected to incremental loading of 0.04 MN under dry friction condition till a crack appeared at the free surfaces. The experimental results were critically analysed, the stress as a function of strain and densification was obtained, then the work hardening behaviour was analyzed. It has been found that in the process of enhancing densification, strength and strain hardening is also induced during upsetting, but the work hardening behaviour is not homogenously enhanced against strain and densification.
基金This work was financially supported by the National Natural Science Foundation of China (No.50465003).
文摘The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.
文摘Aluminium-based metal matrix composites were synthesized from Al-TiO2-Gr powder mixtures using the powder metallurgy technique and their forming characteristics were studied during cold upsetting. Green cylindrical compacts of pure Al, Al-5wt%TiO2, Al-5wt%TiO2-2wt%Gr, and Al-5wt%TiO2-4wt%Gr were made using a 400-kN hydraulic press equipped with suitable punch and die and by sintering at (590 ± 10)°C for 3 h. Cold upset forging tests were carried out, the true axial stress (σz), the true hoop stress (σ?), and the true hy-drostatic stress (σm) were evaluated and, their behavior against the true axial strain (εz) was also analyzed. It is observed that the addition of 5wt%TiO2 into the Al matrix increasesσz,σ?, andσm. The addition of both TiO2 and Gr reinforcements reduces the densification and defor-mation characteristics of the sintered preforms during cold upsetting. Microstructure analyses of the as-sintered and cold upset forged speci-mens also were carried out to substantiate the experimental results.
文摘The cold upsetting studies were carried out for the aluminium metal matrix hybrid composites in the present study. Aluminium metal matrix hybrid composites were synthesised through powder metallurgy route from ball-milled powders to yield the following compositions:Al + 2.5 wt% TiO2+ 2 wt% Gr, Al + 2.5 wt% TiO2+ 4 wt% Gr, Al + 5.0 wt% TiO2+ 2 wt% Gr and Al + 5.0 wt% TiO2+ 4 wt% Gr. The compaction process was carried out using suitable punch and die in 40 k N hydraulic press, and sintering was done in an electric muffle furnace at the temperature of 590 °C for 3 h. The sintered preforms were subjected to incremental compressive loading of 10 k N until the cracks were found at the free surface. The true axial stress, true hoop stress, true hydrostatic stress and true effective stress were calculated for all the preforms, and all these stresses are correlated with the true axial strain. The stress ratio parameters(rz/reff, rh/reff, rz/rmand rh/rm) of the all preforms were correlated with true axial strain. The maximum true axial stress, true hoop stress, true effective stress and hydrostatic static stress are obtained for the composite containing5 wt% of TiO2 and 4 wt% of graphite and the minimum ones are obtained for composite containing 2.5 wt% of TiO2 and 2 wt% of graphite.