To reveal the deterioration mechanism and service life of concrete durability in the western saline soil area,the indoor accelerated test of the concrete specimen was simulated in the coupled environment of salt erosi...To reveal the deterioration mechanism and service life of concrete durability in the western saline soil area,the indoor accelerated test of the concrete specimen was simulated in the coupled environment of salt erosion and dry-wet cycles in the west saline soil area of China.The deterioration mechanism of concrete durability was revealed through the relative dynamic elastic modulus,relative quality evaluation parameters,SEM,and XRD evaluation indexes.Random Wiener distribution function was used for modeling life prediction.The results show that the relative dynamic elastic modulus evaluation parameter as an evaluation index of concrete durability under various environmental coupling effects is more reliable than the relative quality,there were holes and cracks in the concrete,and needle-like and layered crystals grow from the internal cracks.The corrosion products include ettringite,gypsum and other expansive crystals and non-gelling Mg(OH)_(2);the expansion stress caused by physical,chemical reaction,and temperature change under the action of drywet cycle aggravates the formation and development of cracks.The random Wiener distribution function can describe the degradation process of concrete specimen durability,and the established concrete reliability function can intuitively reflect the service life of concrete specimens.展开更多
The current salinization of groundwater in the Laizhou area is controlled by three main factors:surge of the sea and inland residual seaweter seepage, original saline water deposited in marine sediment and excessive e...The current salinization of groundwater in the Laizhou area is controlled by three main factors:surge of the sea and inland residual seaweter seepage, original saline water deposited in marine sediment and excessive extraction of the coastal area groundwater. The saliniation of groundwater have obviously affected the local economy and human health.展开更多
A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the s...A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianiin saline and alkaline areas.展开更多
Taking the mixed pre-salt carbonate rocks in the upper member of Eocene Xiaganchaigou Formation(E_(3)^(2))of Yingxi area in the Qaidam Basin as an example,the lithofacies and controlling mechanisms of reservoir format...Taking the mixed pre-salt carbonate rocks in the upper member of Eocene Xiaganchaigou Formation(E_(3)^(2))of Yingxi area in the Qaidam Basin as an example,the lithofacies and controlling mechanisms of reservoir formation are analyzed based on a large dataset of cores,thin sections and geochemical analysis.The reservoirs in E_(3)^(2)pre-salt layers have five types of lithofacies,of them,mixed granular calcareous dolostone,massive calcareous dolostone,plaque calcareous dolostone,and laminated dolomtic limestone are of sedimentary origin,and breccia calcareous dolostone is of tectonic origin.The four types of sedimentary lithofacies are divided into two types of saline sedimentary sequence lithofacies combinations,low-energy type in the sag area and low to high-energy type in the slope and paleo-uplift zone in the depression.Affected by high-frequency supply of continental clastic material,the two types of salty sedimentary sequences are mostly incomplete subtypes of lithofacies.Lithofacies have strong impacts on pre-salt reservoirs in E_(3)^(2):(1)Lithofacies type and sedimentary sequence controlled the formation and distribution of dolomite intercrystalline pores and dissolved pores during the pene-sedimentary period.(2)The structure of laminated dolomitic limestone controlled the formation of large-scale laminated fractures and high permeability channels during the diagenetic period.(3)Granular,massive,plaque calcareous dolostones have low mud content and strong brittleness,in the late tectonic reactivation period,the distribution of the three types of lithofacies,together with their distance from the top large slip faults and secondary faults,controlled the formation and distribution of high-efficiency fracture-cave brecciaed calcareous dolostone reservoirs.The above research led to the composite lithofacies-tectonic formation model of pre-salt reservoir in E_(3)^(2)of Yingxi area.The tempo-spatial distribution of tectonic breccia calcareous dolostone reservoirs,laminated dolomitic limestone shale oil reservoirs and granular,massive calcareous dolostone dissolved-intercrystalline pore tight reservoirs in various structural belts of the studied area have been figured out.These findings gave new insights into tight-shale oil accumulation theory in mixed carbonate successions from saline lacustrine basins,aiding in high efficient exploration and development of petroleum in the studied area.展开更多
Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three sali...Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three salinity levels sl, s2 and s3 (0.65, 3.2, and 6.1 dS/m) in combination with three water levels wl, w2 and w3 (375, 300, and 225 mm). In 2008, for most treatments, deficit irrigation showed adverse effects on wheat growth; meanwhile, the effect of saline irrigation was not apparent. In 2009, growth parameters of wl treatments were not always optimal under saline irrigation. At 3.2 and 6.1 dS/m in 2008, the highest yield was obtained by wl treatments, however, in 2009, the weight of 1,000 grains and wheat yield both followed the order w2 〉 wl 〉 w3. In this study, spring wheat was sensitive to water deficit, especially at the booting to grain-filling stages, but was not significantly affected by saline irrigation and the combination of the two factors. The results demonstrated that 300-mm irrigation water with a salinity of less than 3.2 dS/m is suitable for wheat fields in the study area.展开更多
Based on the CTD data obtained in the southern Taiwan Strait and its adjacent areas in August and September of 1994, the distributional features of the temperature and salinity in the studied area have been analyzed i...Based on the CTD data obtained in the southern Taiwan Strait and its adjacent areas in August and September of 1994, the distributional features of the temperature and salinity in the studied area have been analyzed in detail. The results are as follows: (1) There are two low temperature and high salinity regions in the nearshore area between Dongshan and Shantou and in the southeastern Taiwan Shoal, respectively, which may be caused by upwellings. (2) There exists a cold eddy in the northwestern sea area and a warm eddy with two high temperature cores in the eastern sea area of the Dongsha Islands, which are related to the anti-cyclonic turning of the seawater near the Dongsha Islands. (3) A westward high temperature and high salinity water tongue extends through the northern Luzon Strait and reaches the sea areas near the Dengsha Islands and southern Taiwan Strait.展开更多
Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spa...Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that: (1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO42- and Cl-, while cations were mainly Na+ and Ca2+; (2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland > cropland > forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March > June > September; (3) the spherical model was the most suitable variogram model to describe the salinity of the 0-3 cm and 3-20 cm soil layers in March and June, and the 3-20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0-3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and (4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.展开更多
The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuou...The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuously rising and are now close to the soil surface in some parts of ORIA in northern Western Australia. The groundwater is now saline throughout most of the ORIA and soil salinity risks are high where the watertables are shallow. This research evaluated irrigation and salinity management strategies for sugarcane and maize crops grown over deep and shallow, non-saline and saline watertables in the ORIA. The LEACHC model, calibrated using field data, was used to predict the impacts of various irrigation management strategies on water use and salt accumulation in the root zone. This study concluded that irrigation application equal to 100% of total fortnightly pan evaporation applied at 14 day intervals was a good irrigation strategy for the maize grown over a deep watertable area. This strategy would require around 11 ML/ha of irrigation water per growing season. Irrigation application equal to 75% of total fortnightly pan evaporation, applied every fortnight during first half of the growing season, and 75% of total weekly pan evaporation, applied on a weekly basis during second half of the growing season, would be the best irrigation strategy if it is feasible to change the irrigation interval from 14 to seven days. This irrigation strategy is predicted to have minimal salinity risks and save around 40% irrigation water. The best irrigation strategy for sugarcane grown on Cununurra clay over a deep watertable area would be irrigation application equal to 50% of the total fortnightly pan evaporation, applied every fortnight during first quarter of the growing season, and irrigation application amounts equal to 100% of total weekly pan evaporation, applied every week during rest of the season. The model predicted no soil salinity risks from this irrigation strategy. The best irrigation strategy for sugarcane over a non-saline, shallow watertable of one or two m depth would be irrigation application amounts equal to 50% of total fortnightly pan evaporation applied every fortnight. In the case of a saline watertable the same irrigation strategy was predicted to the best with respect to water use efficiency but will have high salinity risks without any drainage management.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity i...The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k-epsilon turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperature and salinity in coastal areas has been developed to simulate the seasonal variations of water temperature and salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety of hydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay, Japan.展开更多
High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phre...High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phreatic water evaporation under 0 m depth is the basis of the high salinity phreatic water evaporation studies. In this study, evaporation of high-salinity phreatic water at a burial depth of 0 m in arid area was investigated. New insights were gained on evaporation mechanisms via experiments conducted on high-salinity phreatic water with TDS of 100 g/L at 0 m at the study site at Changji Groundwater Balance Experiment Site, Xinjiang Uygur Autonomous Region in China, where the lithology of the vadose(unsaturated zone) was silty clay. Comparison was made on the data of high-salinity phreatic water evaporation, water surface evaporation(EΦ20) and meteorological data obtained in two complete hydrological years from April 1, 2012 to March 31, 2014. The experiments demonstrated that when the lithology of the vadose zone is silty clay, the burial depth is 0 m and the TDS is 100 g/L, intra-annual variation of phreatic water evaporation is the opposite to the variation of atmospheric evaporation EΦ20 and air temperature. The salt crust formed by the evaporation of high-salinity phreatic water has a strong inhibitory effect on phreatic water evaporation. Large volumes of precipitation can reduce such an inhibitory effect. During freezing periods, surface snow cover can promote the evaporation of high-salinity phreatic water at 0 m; the thicker the snow cover, the more apparent this effect is.展开更多
By analyzing the process of soil salt accumulation in irrigation area, and discussing the change of irrigation and drainage methods for drought transformed into water, the control scheme of soil secondary salinization...By analyzing the process of soil salt accumulation in irrigation area, and discussing the change of irrigation and drainage methods for drought transformed into water, the control scheme of soil secondary salinization in Wujiazi Irrigation Area was analyzed concretely, and the experience was summarized. After in-depth discussion, the importance of irrigation and drainage methods in the prevention and control of soil secondary salinization in irrigation areas was analyzed.展开更多
基金Funded by National Natural Science Foundation of China(NSFC)(Nos.52178216,51868044)。
文摘To reveal the deterioration mechanism and service life of concrete durability in the western saline soil area,the indoor accelerated test of the concrete specimen was simulated in the coupled environment of salt erosion and dry-wet cycles in the west saline soil area of China.The deterioration mechanism of concrete durability was revealed through the relative dynamic elastic modulus,relative quality evaluation parameters,SEM,and XRD evaluation indexes.Random Wiener distribution function was used for modeling life prediction.The results show that the relative dynamic elastic modulus evaluation parameter as an evaluation index of concrete durability under various environmental coupling effects is more reliable than the relative quality,there were holes and cracks in the concrete,and needle-like and layered crystals grow from the internal cracks.The corrosion products include ettringite,gypsum and other expansive crystals and non-gelling Mg(OH)_(2);the expansion stress caused by physical,chemical reaction,and temperature change under the action of drywet cycle aggravates the formation and development of cracks.The random Wiener distribution function can describe the degradation process of concrete specimen durability,and the established concrete reliability function can intuitively reflect the service life of concrete specimens.
文摘The current salinization of groundwater in the Laizhou area is controlled by three main factors:surge of the sea and inland residual seaweter seepage, original saline water deposited in marine sediment and excessive extraction of the coastal area groundwater. The saliniation of groundwater have obviously affected the local economy and human health.
文摘A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianiin saline and alkaline areas.
基金Supported by the China National Science and Technology Major Project(2017ZX05001-002,2016ZX05046-006)Petro China Science and Technology Major Project(2019B-0309)。
文摘Taking the mixed pre-salt carbonate rocks in the upper member of Eocene Xiaganchaigou Formation(E_(3)^(2))of Yingxi area in the Qaidam Basin as an example,the lithofacies and controlling mechanisms of reservoir formation are analyzed based on a large dataset of cores,thin sections and geochemical analysis.The reservoirs in E_(3)^(2)pre-salt layers have five types of lithofacies,of them,mixed granular calcareous dolostone,massive calcareous dolostone,plaque calcareous dolostone,and laminated dolomtic limestone are of sedimentary origin,and breccia calcareous dolostone is of tectonic origin.The four types of sedimentary lithofacies are divided into two types of saline sedimentary sequence lithofacies combinations,low-energy type in the sag area and low to high-energy type in the slope and paleo-uplift zone in the depression.Affected by high-frequency supply of continental clastic material,the two types of salty sedimentary sequences are mostly incomplete subtypes of lithofacies.Lithofacies have strong impacts on pre-salt reservoirs in E_(3)^(2):(1)Lithofacies type and sedimentary sequence controlled the formation and distribution of dolomite intercrystalline pores and dissolved pores during the pene-sedimentary period.(2)The structure of laminated dolomitic limestone controlled the formation of large-scale laminated fractures and high permeability channels during the diagenetic period.(3)Granular,massive,plaque calcareous dolostones have low mud content and strong brittleness,in the late tectonic reactivation period,the distribution of the three types of lithofacies,together with their distance from the top large slip faults and secondary faults,controlled the formation and distribution of high-efficiency fracture-cave brecciaed calcareous dolostone reservoirs.The above research led to the composite lithofacies-tectonic formation model of pre-salt reservoir in E_(3)^(2)of Yingxi area.The tempo-spatial distribution of tectonic breccia calcareous dolostone reservoirs,laminated dolomitic limestone shale oil reservoirs and granular,massive calcareous dolostone dissolved-intercrystalline pore tight reservoirs in various structural belts of the studied area have been figured out.These findings gave new insights into tight-shale oil accumulation theory in mixed carbonate successions from saline lacustrine basins,aiding in high efficient exploration and development of petroleum in the studied area.
基金supported by the National Basic Research Program of China (2011CB403406)the National Natural Science Foundation of China (51179166)the Youth Foundation of Taiyuan University of Technology (2012L077)
文摘Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three salinity levels sl, s2 and s3 (0.65, 3.2, and 6.1 dS/m) in combination with three water levels wl, w2 and w3 (375, 300, and 225 mm). In 2008, for most treatments, deficit irrigation showed adverse effects on wheat growth; meanwhile, the effect of saline irrigation was not apparent. In 2009, growth parameters of wl treatments were not always optimal under saline irrigation. At 3.2 and 6.1 dS/m in 2008, the highest yield was obtained by wl treatments, however, in 2009, the weight of 1,000 grains and wheat yield both followed the order w2 〉 wl 〉 w3. In this study, spring wheat was sensitive to water deficit, especially at the booting to grain-filling stages, but was not significantly affected by saline irrigation and the combination of the two factors. The results demonstrated that 300-mm irrigation water with a salinity of less than 3.2 dS/m is suitable for wheat fields in the study area.
文摘Based on the CTD data obtained in the southern Taiwan Strait and its adjacent areas in August and September of 1994, the distributional features of the temperature and salinity in the studied area have been analyzed in detail. The results are as follows: (1) There are two low temperature and high salinity regions in the nearshore area between Dongshan and Shantou and in the southeastern Taiwan Shoal, respectively, which may be caused by upwellings. (2) There exists a cold eddy in the northwestern sea area and a warm eddy with two high temperature cores in the eastern sea area of the Dongsha Islands, which are related to the anti-cyclonic turning of the seawater near the Dongsha Islands. (3) A westward high temperature and high salinity water tongue extends through the northern Luzon Strait and reaches the sea areas near the Dengsha Islands and southern Taiwan Strait.
基金funded by the National Natural Science Foundation of China (Nos. 41201032, 41561073, and U1138302)
文摘Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that: (1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO42- and Cl-, while cations were mainly Na+ and Ca2+; (2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland > cropland > forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March > June > September; (3) the spherical model was the most suitable variogram model to describe the salinity of the 0-3 cm and 3-20 cm soil layers in March and June, and the 3-20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0-3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and (4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.
文摘The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuously rising and are now close to the soil surface in some parts of ORIA in northern Western Australia. The groundwater is now saline throughout most of the ORIA and soil salinity risks are high where the watertables are shallow. This research evaluated irrigation and salinity management strategies for sugarcane and maize crops grown over deep and shallow, non-saline and saline watertables in the ORIA. The LEACHC model, calibrated using field data, was used to predict the impacts of various irrigation management strategies on water use and salt accumulation in the root zone. This study concluded that irrigation application equal to 100% of total fortnightly pan evaporation applied at 14 day intervals was a good irrigation strategy for the maize grown over a deep watertable area. This strategy would require around 11 ML/ha of irrigation water per growing season. Irrigation application equal to 75% of total fortnightly pan evaporation, applied every fortnight during first half of the growing season, and 75% of total weekly pan evaporation, applied on a weekly basis during second half of the growing season, would be the best irrigation strategy if it is feasible to change the irrigation interval from 14 to seven days. This irrigation strategy is predicted to have minimal salinity risks and save around 40% irrigation water. The best irrigation strategy for sugarcane grown on Cununurra clay over a deep watertable area would be irrigation application equal to 50% of the total fortnightly pan evaporation, applied every fortnight during first quarter of the growing season, and irrigation application amounts equal to 100% of total weekly pan evaporation, applied every week during rest of the season. The model predicted no soil salinity risks from this irrigation strategy. The best irrigation strategy for sugarcane over a non-saline, shallow watertable of one or two m depth would be irrigation application amounts equal to 50% of total fortnightly pan evaporation applied every fortnight. In the case of a saline watertable the same irrigation strategy was predicted to the best with respect to water use efficiency but will have high salinity risks without any drainage management.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59779023,No.59839330)
文摘The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k-epsilon turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperature and salinity in coastal areas has been developed to simulate the seasonal variations of water temperature and salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety of hydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay, Japan.
基金sponsored by NationalNatural Science Foundation of China (51069016)Foundation of Key Disciplines in Hydrology and Water Resources of Xinjiang Uygur Autonomous Region (xjswszyzdxk20101202)
文摘High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phreatic water evaporation under 0 m depth is the basis of the high salinity phreatic water evaporation studies. In this study, evaporation of high-salinity phreatic water at a burial depth of 0 m in arid area was investigated. New insights were gained on evaporation mechanisms via experiments conducted on high-salinity phreatic water with TDS of 100 g/L at 0 m at the study site at Changji Groundwater Balance Experiment Site, Xinjiang Uygur Autonomous Region in China, where the lithology of the vadose(unsaturated zone) was silty clay. Comparison was made on the data of high-salinity phreatic water evaporation, water surface evaporation(EΦ20) and meteorological data obtained in two complete hydrological years from April 1, 2012 to March 31, 2014. The experiments demonstrated that when the lithology of the vadose zone is silty clay, the burial depth is 0 m and the TDS is 100 g/L, intra-annual variation of phreatic water evaporation is the opposite to the variation of atmospheric evaporation EΦ20 and air temperature. The salt crust formed by the evaporation of high-salinity phreatic water has a strong inhibitory effect on phreatic water evaporation. Large volumes of precipitation can reduce such an inhibitory effect. During freezing periods, surface snow cover can promote the evaporation of high-salinity phreatic water at 0 m; the thicker the snow cover, the more apparent this effect is.
文摘By analyzing the process of soil salt accumulation in irrigation area, and discussing the change of irrigation and drainage methods for drought transformed into water, the control scheme of soil secondary salinization in Wujiazi Irrigation Area was analyzed concretely, and the experience was summarized. After in-depth discussion, the importance of irrigation and drainage methods in the prevention and control of soil secondary salinization in irrigation areas was analyzed.