[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effect...[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effects of drought stress(MDS)and drought stress with low(MDS-L),medium(MDS-M)and high doses(MDS-H)of the water-retaining agent on the growth and development indicators,root activity,MDA content,antioxidant enzyme activity,yield and quality of soybean were studied by field plot test,with the normal water supply serving as the control(CK).[Results]In response to drought stress,the plant height,stem diameter,and yield of soybean exhibited a notable decline.Additionally,the contents of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a significant reduction.Conversely,the root activity and antioxidant enzyme activity exhibited a noticeable decline,while the MDA content exhibited an increase.The application of varying doses of the water-retaining agent was found to significantly enhance soybean growth,stimulate root activity,and elevate antioxidant enzyme activity,while concurrently reducing MDA content.The observed effects were found to be dose-dependent,with the greatest effects observed at the highest dose.In comparison to MDS,the yields of soybean in the MDS-L,MDS-M,and MDS-H treatments exhibited a 18.38%,25.58%,and 46.26%increase,respectively.Additionally,the content of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a notable enhancement.[Conclusions]The application of the water-retaining agent has been demonstrated to significantly promote the growth of soybean plants under conditions of drought stress,resulting in an improvement in both the yield and the quality of the soybean crop.The recommended dosage of the water-retaining agent is 3.3 kg/667 m 2.展开更多
Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drou...Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control.展开更多
基金Supported by Science and Technology Program of the Fourth Division Kekedala City(2023GG11).
文摘[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effects of drought stress(MDS)and drought stress with low(MDS-L),medium(MDS-M)and high doses(MDS-H)of the water-retaining agent on the growth and development indicators,root activity,MDA content,antioxidant enzyme activity,yield and quality of soybean were studied by field plot test,with the normal water supply serving as the control(CK).[Results]In response to drought stress,the plant height,stem diameter,and yield of soybean exhibited a notable decline.Additionally,the contents of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a significant reduction.Conversely,the root activity and antioxidant enzyme activity exhibited a noticeable decline,while the MDA content exhibited an increase.The application of varying doses of the water-retaining agent was found to significantly enhance soybean growth,stimulate root activity,and elevate antioxidant enzyme activity,while concurrently reducing MDA content.The observed effects were found to be dose-dependent,with the greatest effects observed at the highest dose.In comparison to MDS,the yields of soybean in the MDS-L,MDS-M,and MDS-H treatments exhibited a 18.38%,25.58%,and 46.26%increase,respectively.Additionally,the content of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a notable enhancement.[Conclusions]The application of the water-retaining agent has been demonstrated to significantly promote the growth of soybean plants under conditions of drought stress,resulting in an improvement in both the yield and the quality of the soybean crop.The recommended dosage of the water-retaining agent is 3.3 kg/667 m 2.
基金the National Natural Science Foundation of China (30300213 and 30070439)the Program for New Century Excellent Talents in University, China (NCET-07-0700)
文摘Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control.