期刊文献+
共找到19,854篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of gravity wave activity during stratospheric sudden warmings in the northern hemisphere 被引量:2
1
作者 XuanYun Zeng Guang Zhong 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期415-422,共8页
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ... Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work. 展开更多
关键词 stratospheric sudden warming gravity wave wind filter
下载PDF
El Niño and the AMO Sparked the Astonishingly Large Margin of Warming in the Global Mean Surface Temperature in 2023 被引量:2
2
作者 Kexin LI Fei ZHENG +1 位作者 Jiang ZHU Qing-Cun ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1017-1022,共6页
In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ... In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered. 展开更多
关键词 record-breaking temperature global mean surface temperature El Niño AMO global warming
下载PDF
Temperature trends and its elevation-dependent warming over the Qilian Mountains
3
作者 ZHAO Peng HE Zhibin +2 位作者 MA Dengke WANG Wen QIAN Lihui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期500-510,共11页
Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,deg... Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon. 展开更多
关键词 Climate change Qilian Mountains warming rates DTR Elevation-dependent warming
下载PDF
The Sword of Damocles behind the Curtain of the Earth’s Global Warming: A Review
4
作者 Jacques Bourgois 《International Journal of Geosciences》 CAS 2024年第2期119-136,共18页
The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main c... The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main cause of the current global warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse gases originating from the anthropic activities. However, no scientific evidence has been provided for this basic notion. Earth paleoclimatic records document the antecedence of temperature over CO<sub>2</sub> levels. For the past 65 Ma, the temperature parameter has controlled the subsequent increase in CO<sub>2</sub>. This includes the three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and 23 Ma REF _Ref159913672 \r \h \* MERGEFORMAT [1]. The simple fact of their existence points to the potential for highly nonlinear responses in climate forcing. Whatever these shifts and transients are, CO<sub>2</sub> remains a second order parameter in their evolution through time. Confronted with the past, a suitable response must therefore be given to the unresolved question of whether the CO<sub>2</sub> trends precede the temperature trends in the current period, or not. The assertion that the current global warming is anthropogenic in origin implicitly presupposes a change of paradigm, with the consequence (the increase in CO<sub>2</sub> levels) that occurred in Earth’s past being positioned as the cause of the warming for its present day climatic evolution. The compulsory assumption regarding the antecedence of CO<sub>2</sub> levels over the temperature trends is associated with the haziness of the methodological framework—i.e. the paradigm—and tightens the research fields on the likely origins of global warming. The possible involvement of an “aberrant” natural event, hidden behind the massive release of greenhouse gases, has not been considered by the MSC. 展开更多
关键词 CLIMATE CO2 Temperature PALEOCLIMATE warming
下载PDF
Climate warming is significantly influenced by rising summer maximum temperatures:insights from tree-ring evidence of the Western Tianshan Mountains,China
5
作者 Meng Ren Yu Liu +3 位作者 Qiufang Cai Qiang Li Huiming Song Changfeng Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期142-154,共13页
As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con... As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions. 展开更多
关键词 Tree rings Western Tianshan mountains Temperature change Climate warming
下载PDF
Increased population exposures to extreme precipitation in Central Asia under 1.5℃ and 2℃ global warming scenarios
6
作者 Wei Wei Shan Zou +4 位作者 Weili Duan Yaning Chen Shuai Li Takahiro Sayama Jianyu Zhu 《Geography and Sustainability》 CSCD 2024年第3期343-356,共14页
The increase in extreme precipitation(EP)may pose a serious threat to the health and safety of population in arid and semi-arid regions.The current research on the impact of EP on population in Central Asia(CA)is insu... The increase in extreme precipitation(EP)may pose a serious threat to the health and safety of population in arid and semi-arid regions.The current research on the impact of EP on population in Central Asia(CA)is insufficient and there is an urgent need for a comprehensive assessment.Hence,we opted for precipitation and temperature data under two Shared Socioeconomic Pathways(SSP2-4.5 and SSP5-8.5)from ten Global Climate Models(GCMs),which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP-CMIP6).By integrating population data in 2020 and 2050(SSP2 and SSP5),we investigated the future changes in EP and population exposure in CA under 1.5℃and 2℃global warming scenarios(GWSs).Our analysis indicates that EP in CA is projected to increase with global warming.Under the SSP5-8.5,the maximum daily precipitation(Rx1day)exhibits an average response rate to global warming of 3.58%/K(1.99-4.06%/K).With rising temperatures,an increasing number of areas and populations in CA will be impacted by EP,especially in the Fergana valley.Approximately 25%of the population(land area)in CA is exposed to Rx1day with increases of more than 8.31%(9.32%)under 1.5℃GWS and 14.18%(13.25%)under 2℃GWS.Controlling temperature rise can be effective in reducing population exposures to EP.For instance,limiting the temperature increase to 1.5℃instead of 2℃results in a 2.79%(1.75%-4.59%)reduction in population exposure to Rx1day.Finally,we found that climate change serves as the predominant factor influencing the population exposure to EP,while the role of population redistribution,although relatively minor,should not be disregarded.Particularly for prolonged drought,the role of population redistribution manifests negatively. 展开更多
关键词 Extreme precipitation Global warming Population exposure Central Asia
下载PDF
Climate warming is significantly influenced by rising summer maximum temperatures: insights from tree-ring evidence of the Western Tianshan Mountains, China
7
作者 Meng Ren Yu Liu +3 位作者 Qiufang Cai Qiang Li Huiming Song Changfeng Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期47-59,共13页
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c... As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions. 展开更多
关键词 Tree rings Western Tianshan mountains Temperature change Climate warming
下载PDF
Using satellite-derived land surface temperatures to clarify the spatiotemporal warming trends of the Alborz Mountains in northern Iran
8
作者 ROSHAN Gholamreza SARLI Reza +2 位作者 GHANGHERMEH Abdolazim TAHERIZADEH Mehrnoosh NIKNAM Arman 《Journal of Mountain Science》 SCIE CSCD 2024年第2期449-469,共21页
The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects... The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July. 展开更多
关键词 Global warming Mountainous areas Lapse rate Surface air temperatures ALBORZ
下载PDF
Changes in the Boreal Summer Intraseasonal Oscillation under Global Warming in CMIP6 Models
9
作者 Zhefan GAO Chaoxia YUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1984-1998,共15页
Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumpti... Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumption.Results show that the intraseasonal variations become more structured.The BSISO-related precipitation anomaly shows a larger zonal scale and propagates further northward.However,there is no broad agreement among models on the changes in the eastward and northward propagation speeds and the frequency of individual phases.In the western North Pacific(WNP),the BSISO precipitation variance is significantly increased,at 4.62%K^(−1),due to the significantly increased efficiency of vertical moisture transport per unit of BSISO apparent heating.The vertical velocity variance is significantly decreased,at−3.51%K^(−1),in the middle troposphere,due to the significantly increased mean-state static stability.Changes in the lower-level zonal wind variance are relatively complex,with a significant increase stretching from the northwestern to southeastern WNP,but the opposite in other regions.This is probably due to the combined impacts of the northeastward shift of the BSISO signals and the reduced BSISO vertical velocity variance under global warming.Changes in strong and normal BSISO events in the WNP are also compared.They show same-signed changes in precipitation and large-scale circulation anomalies but opposite changes in the vertical velocity anomalies.This is probably because the precipitation anomaly of strong(normal)events changes at a rate much larger(smaller)than that of the meanstate static stability,causing enhanced(reduced)vertical motion. 展开更多
关键词 Boreal Summer Intraseasonal Oscillation global warming CMIP6 weak-temperature-gradient assumption
下载PDF
Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis
10
作者 Yonghui Fan Boya Qin +8 位作者 Jinhao Yang Liangliang Ma Guoji Cui Wei He Yu Tang Wenjing Zhang Shangyu Ma Chuanxi Ma Zhenglai Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期536-550,共15页
Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv... Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield. 展开更多
关键词 wheat asymmetric warming dry matter accumulation and translocation STARCH yield
下载PDF
Bad News—The Dominant Causes of the Earth’s Global Warming Are Processes on the Sun, and Humanity Can Do Nothing or Little to Stop It?
11
作者 Nikolay Petrov Takuchev 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期1388-1411,共24页
Arguments that global warming in the Earth’s atmosphere of the last 70 years is partially or entirely caused by changes in the solar magnetic field are presented in the work. Global warming is probably a consequence ... Arguments that global warming in the Earth’s atmosphere of the last 70 years is partially or entirely caused by changes in the solar magnetic field are presented in the work. Global warming is probably a consequence of ionizing radiation emitted from the Sun mainly in the “rise” phase of solar activity. The ionizing radiation is positively charged particles with high energy. They penetrate deep into the Earth’s atmosphere, creating increased content of ions serving as condensation nuclei. The condensation nuclei increase cloudiness in the lower atmosphere and lower the surface air temperature. When solar activity decreases as observed in the last 70 years, the reverse process occurs— cloud cover decreases, more solar electromagnetic radiation reaches the earth’s surface and increases the temperature. An additional argument for the presence of high-energy radiation that penetrates deeply into the Earth’s atmosphere and even reaches the Earth’s surface is the high statistically significant correlation between the fluxes of such radiation recorded by GOES series satellites in a geostationary orbit (36,000 km above the Earth’s surface) and the human mortality from deadliest diseases. 展开更多
关键词 Global warming Climate Change Solar Cycle Ionizing Radiation Satellite Data
下载PDF
Old Pinus massoniana forests benefit more from recent rapid warming in humid subtropical areas of central-southern China
12
作者 Wenxin Li Liangjun Zhu +4 位作者 Lianhua Zhu Mengdan Jing Censhi Qian Yu Zhu Paolo Cherubini 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期155-170,共16页
Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and... Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China. 展开更多
关键词 Tree rings Pinus massoniana Age effects Drought resilience Subtropical forests Rapid warming
下载PDF
The sudden ocean warming and its potential influences on earlyfrozen landfast ice in the Prydz Bay, East Antarctica
13
作者 Haihan Hu Jiechen Zhao +4 位作者 Jingkai Ma Igor Bashmachnikov Natalia Gnatiuk Bo Xu Fengming Hui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期65-77,共13页
The ocean conditions beneath the ice cover play a key role in understanding the sea ice mass balance in the polar regions.An integrated high-frequency ice-ocean observation system,including Acoustic Doppler Velocimete... The ocean conditions beneath the ice cover play a key role in understanding the sea ice mass balance in the polar regions.An integrated high-frequency ice-ocean observation system,including Acoustic Doppler Velocimeter,Conductivity-Temperature-Depth Sensor,and Sea Ice Mass Balance Array(SIMBA),was deployed in the landfast ice region close to the Chinese Zhongshan Station in Antarctica.A sudden ocean warming of 0.14℃(p<0.01)was observed beneath early-frozen landfast ice,from(−1.60±0.03)℃during April 16-19 to(−1.46±0.07)℃during April 20-23,2021,which is the only significant warming event in the nearly 8-month records.The sudden ocean warming brought a double rise in oceanic heat flux,from(21.7±11.1)W/m^(2) during April 16-19 to(44.8±21.3)W/m^(2) during April 20-23,2021,which shifted the original growth phase at the ice bottom,leading to a 2 cm melting,as shown from SIMBA and borehole observations.Simultaneously,the slowdown of ice bottom freezing decreased salt rejection,and the daily trend of observed ocean salinity changed from+0.02 d^(-1) during April 16-19,2021 to+0.003 d^(-1) during April 20-23,2021.The potential reasons are increased air temperature due to the transit cyclones and the weakened vertical ocean mixing due to the tide phase transformation from semi-diurnal to diurnal.The high-frequency observations within the ice-ocean boundary layer enhance the comprehensive investigation of the ocean’s influence on ice evolution at a daily scale. 展开更多
关键词 sudden ocean warming oceanic heat flux landfast ice Zhongshan Station in-situ observation
下载PDF
Summer Warming Limited Bud Output Drives a Decline in Daughter Shoot Biomass through Reduced Photosynthetis of Parent Shoots in Leymus chinensis Seedlings
14
作者 Song Gao Ruocheng Xu +4 位作者 Lin Li Jiao Wang Nian Liu Johannes M.H.Knops Junfeng Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1667-1675,共9页
Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a s... Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a simulated experiment using potted Leymus chinensis,to study the relationship between the photosynthetic activ-ity of parent shoots and the production of daughter shoots under a whole(90 days)summer warming scenario(+3°C).The results showed that the biomass of parents and buds decreased by 25.52%and 33.45%,respectively,under warming conditions.The reduction in parent shoot biomass due to warming directly resulted from decreased leaf area(18.03%),chlorophyll a(18.27%),chlorophyll b(29.21%)content,as well as a reduction in net photosynthetic rate(7.32%)and the maximum quantum efficiency of photosystem II(PSII)photochemistry(4.29%).The decline in daughter shoot biomass was linked to a decrease in daughter shoot number(33.33%)by warming.However,the number of belowground buds increased by 46.43%.The results indicated that long-term summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-stoma.Consequently,the parent shoot allocates relatively more biomass to the belowground organs to maintain the survival and growth of buds.Overall,buds,as a potential aboveground population,could remedy for the cur-rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides. 展开更多
关键词 warming parent shoot bud bank photosynthesis chlorophyllfluorescence Leymus chinensis
下载PDF
Elevational patterns of warming effects on plant community and topsoil properties: focus on subalpine meadows ecosystem
15
作者 HAO Aihua LUO Zhengming CHEN Xiaojiang 《Journal of Mountain Science》 SCIE CSCD 2024年第1期146-159,共14页
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient... Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity. 展开更多
关键词 warming effect Plant diversity pattern Community structure change Elevation gradient Alpine meadow ecosystem Mount Wutai
下载PDF
Long-term variation of Arctic Sudden Stratospheric Warmings(SSW)and potential causes
16
作者 QingRan Li ShaoDong Zhang +4 位作者 KaiMing Huang ChunMing Huang Yun Gong WenTao Tang Zheng Ma 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期742-752,共11页
Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the po... Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the polar vortices,and stratospheric Planetary Waves(PWs)by analyzing and comparing their trends.Interestingly,within overall increasing trends,the duration and strength of SSWs exhibit increasing and decreasing trends before and after the winter of 2002,respectively.To reveal possible physical mechanisms driving these trends,we analyzed the long-term trends of the winter(from December to February)polar vortices and of stratospheric PWs with zonal wave number 1.Notably,our results show that in all three time periods(the entire period of 41winters,1980 to 2020,and the two subperiods—1980-2002 and 2002-2020)enhancing SSWs were always accompanied by weakening winter polar vortices and strengthening polar PWs like Stationary Planetary Waves(SPWs)and 16-day waves,and vice versa.This is the first proof,based on ERA5 long-term trend data,that weakening polar vortices and enhancing stratospheric PWs(especially SPWs)could cause an increase in SSWs. 展开更多
关键词 sudden stratospheric warmings stationary planetary waves 16-day waves polar vortrices long-term trend correlation coefficient
下载PDF
Variability of the Pacific subtropical cells under global warming in CMIP6 models
17
作者 Xue HAN Junqiao FENG +1 位作者 Yunlong LU Dunxin HU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期24-40,共17页
The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variab... The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variability of STCs under global warming is investigated using multimodal outputs from the latest phase of the Coupled Model Inter-comparison Project(CMIP6)and ocean reanalysis products.Firstly,the volume transport diagnostic analysis is employed to evaluate how coupled models and ocean reanalysis products reproduce interior STC transport.The variation of heat transport by the interior STC under the high-emissions warming scenarios is also analyzed.The results show that the multimodal-mean linear trends of the interior STC transport along 9°S and 9°N are-0.02 Sv/a and 0.04 Sv/a under global warming,respectively,which is mainly due to the combined effect of the strengthened upper oceanic stratification and the weakening of wind field.There is a compensation relationship between the interior STC and the western boundary transport in the future climate,and the compensation relationship of 9°S is more significant than that of 9°N.In addition,compared with ocean reanalysis products,the coupled models tend to underestimate the variability of the interior STC transport convergence,and thus may lose some sea surface temperature(SST)driving force,which may be the reason for the low STC-SST correlation simulated by the model.The future scenario simulation shows that the heat transport of interior STC is weakened under global warming,with a general agreement across models. 展开更多
关键词 interior subtropical cell(STC) global warming Coupled Model Inter-comparison Project(CMIP6) western boundary transport
下载PDF
Global Warming in Japanese Cities from 1960 to 2019 Using Machine Learning
18
作者 Fumio Maruyama 《Journal of Geoscience and Environment Protection》 2024年第9期198-214,共17页
In this study, we investigated the variations in warming between Japanese cities for 1960-1989, and 1990-2019 using principal component analysis (PCA) and k-means clustering. The precipitation and sunshine hours exhib... In this study, we investigated the variations in warming between Japanese cities for 1960-1989, and 1990-2019 using principal component analysis (PCA) and k-means clustering. The precipitation and sunshine hours exhibited opposite tendencies in the PCA results. It was found that 1960M and 1990M had a correlation (r = 0.51). The 1960M and 1990M are the mean temperature anomalies in Japanese cities for 1960-1989 and 1990-2019, respectively. There was a strong correlation between temperature and precipitation (r = 0.62). There was an inverse correlation between 1960M and sunshine hours (r = −0.25), but a correlation between 1990M and sunshine hours (r = 0.11). Sunshine hours had less effect on the 1960M but more impact on the 1990M. The k-means clustering for 1960M and 1990M can be classified into four types: high 1960M and high 1990M, which indicates that global warming is progressing rapidly (Sapporo, Tokyo, Kyoto, Osaka, Fukuoka, Nagasaki), low 1960M and low 1990M, global warming is progressing slowly (Nemuro, Ishinomaki, Yamagata, Niigata, Fushiki, Nagano, Karuizawa, Mito, Suwa, Iida, Hamada, Miyazaki, Naha), low 1960M and high 1990M, global warming has accelerated since 1990 (Utsunomiya, Kofu, Okayama, Hiroshima), and normal 1960M and normal 1990M, the rate of warming is normal among the 38 cities (Asahikawa, Aomori, Akita, Kanazawa, Maebashi, Matsumoto, Yokohama, Gifu, Nagoya, Hamamatsu, Kochi, Kagoshima). Higher annual temperatures were correlated with higher annual precipitation according to the k-means clustering of temperature and precipitation. Two of the four categories consisted of places with high annual temperatures and high precipitation (Fushiki, Kanazawa, Kochi, Miyazaki, Kagoshima, Naha, Ishigakijima), and places with low annual temperatures and low precipitation (Asahikawa, Nemuro, Sapporo, Karuizawa). 展开更多
关键词 Global warming JAPAN Machine Learning Principal Component Analysis K-Means Clustering
下载PDF
Effects of Anthropogenic CO2 and Thermally-Induced CO2 on Global Warming
19
作者 Masaharu Nishioka 《Atmospheric and Climate Sciences》 2024年第3期317-327,共11页
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper... Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. . 展开更多
关键词 Global warming Anthropogenic CO2 Thermally-Induced CO2 Soil Respiration Carbon Cycles
下载PDF
A Simulative Study on Effects of Climate Warming on Nutrient Contents and In Vitro Digestibility of Herbage Grown in Qinghai-Xizang Plateau 被引量:11
20
作者 徐世晓 赵新全 +3 位作者 孙平 赵同标 赵伟 薛白 《Acta Botanica Sinica》 CSCD 2002年第11期1357-1364,共8页
The increasing trend of air temperature along with the climate warming has been accepted gradually by scientists and by the general public. Qinghai_Xizang Plateau, a unique geographic unit due to high_altitude climate... The increasing trend of air temperature along with the climate warming has been accepted gradually by scientists and by the general public. Qinghai_Xizang Plateau, a unique geographic unit due to high_altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensitive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai_Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the increase of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai_Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai_Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indigestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, consequently, decreases the ruminant assimilation ability. 展开更多
关键词 climate warming Daban Mountain temperature HERBAGE nutrient contents in vitro digestibility
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部