As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
Over the past decade,the electric vehicle industry of China has developed rapidly,reaching one of the highest technological levels in the world.Nevertheless,most electric buses currently serve urban areas,being unsuit...Over the past decade,the electric vehicle industry of China has developed rapidly,reaching one of the highest technological levels in the world.Nevertheless,most electric buses currently serve urban areas,being unsuitable for all-climate operations.In response to the objective of massively adopting electric vehicles for transportation during all the events of the 2022 Beijing Winter Olympics,a dual-motor coaxial propulsion system for all-climate electric vehicles is proposed.The system aims to meet operating requirements such as high speed and adaptability to mountainous roads under severely cold environments.The system provides three operating modes,whose characteristics are analyzed under different conditions.In addition,dual-motor collaborative control strategy with collaborative gearshift and collaborative power distribution is proposed to eliminate power interruption during gearshift process and achieve intelligent power distribution,thus improving the gearshift quality and reducing energy consumption.Finally,gear position calibration for all-climate operation and proper gearshift is introduced.Experimental results demonstrate the advantages of the proposed dual-motor coaxial propulsion system regard-ing gearshift compared with the conventional single-motor automatic transmission.展开更多
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51975049in part by the National Key Technology Research and Development Program of China under Grant 2017YFB0103801.
文摘Over the past decade,the electric vehicle industry of China has developed rapidly,reaching one of the highest technological levels in the world.Nevertheless,most electric buses currently serve urban areas,being unsuitable for all-climate operations.In response to the objective of massively adopting electric vehicles for transportation during all the events of the 2022 Beijing Winter Olympics,a dual-motor coaxial propulsion system for all-climate electric vehicles is proposed.The system aims to meet operating requirements such as high speed and adaptability to mountainous roads under severely cold environments.The system provides three operating modes,whose characteristics are analyzed under different conditions.In addition,dual-motor collaborative control strategy with collaborative gearshift and collaborative power distribution is proposed to eliminate power interruption during gearshift process and achieve intelligent power distribution,thus improving the gearshift quality and reducing energy consumption.Finally,gear position calibration for all-climate operation and proper gearshift is introduced.Experimental results demonstrate the advantages of the proposed dual-motor coaxial propulsion system regard-ing gearshift compared with the conventional single-motor automatic transmission.