The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral ...The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral images(HSIs)have complementary characteristics.The MSI has a large swath and short revisit period,but the number of bands is limited with low spectral resolution,leading to weak separability of between class spectra.Compared with MSI,HSI has hundreds of bands and each of them is narrow in bandwidth,which enable it to have the ability of fine classification,but too long in aspects of revisit period.To make efficient use of their combined advantages,multispectral-hyperspectral remote sensing image collaborative classification has become one of hot topics in remote sensing.To deal with the collaborative classification,most of current methods are unsupervised and only consider the HSI reconstruction as the objective.In this paper,a class-guided coupled dictionary learning method is proposed,which is obviously distinguished from the current methods.Specifically,the proposed method utilizes the labels of training samples to construct discriminative sparse representation coefficient error and classification error as regularization terms,so as to enforce the learned coupled dictionaries to be both representational and discriminative.The learned coupled dictionaries facilitate pixels from the same category have similar sparse represent coefficients,while pixels from different categories have different sparse represent coefficients.The experiments on three pairs of HSI and MSI have shown better classification performance.展开更多
When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes ...When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation.展开更多
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ...Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations.展开更多
基金supported by the National Natural Youth Science Foundation Project (Grant No. 62001142)the Key International Cooperation Project (Grant No. 61720106002)+1 种基金the Distinguished Young Scholars of National Natural Science Foundation of China (Grant No. 62025107)Heilongjiang Postdoctoral Fund (Grant No. LBH-Z20068)
文摘The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral images(HSIs)have complementary characteristics.The MSI has a large swath and short revisit period,but the number of bands is limited with low spectral resolution,leading to weak separability of between class spectra.Compared with MSI,HSI has hundreds of bands and each of them is narrow in bandwidth,which enable it to have the ability of fine classification,but too long in aspects of revisit period.To make efficient use of their combined advantages,multispectral-hyperspectral remote sensing image collaborative classification has become one of hot topics in remote sensing.To deal with the collaborative classification,most of current methods are unsupervised and only consider the HSI reconstruction as the objective.In this paper,a class-guided coupled dictionary learning method is proposed,which is obviously distinguished from the current methods.Specifically,the proposed method utilizes the labels of training samples to construct discriminative sparse representation coefficient error and classification error as regularization terms,so as to enforce the learned coupled dictionaries to be both representational and discriminative.The learned coupled dictionaries facilitate pixels from the same category have similar sparse represent coefficients,while pixels from different categories have different sparse represent coefficients.The experiments on three pairs of HSI and MSI have shown better classification performance.
基金supported by Phase 4,Software Engineering(Software Service Engineering)under Grant No.XXKZD1301
文摘When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation.
基金Project(2019JJ40047)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(kq2014057)supported by the Changsha Municipal Natural Science Foundation,China。
文摘Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations.