期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Class-guided coupled dictionary learning for multispectral-hyperspectral remote sensing image collaborative classification 被引量:2
1
作者 LIU TianZhu GU YanFeng JIA XiuPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期744-758,共15页
The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral ... The fine classification of large-scale scenes is becoming more and more important in optical remote sensing applications.As two kinds of typical optical remote sensing data,multispectral images(MSIs)and hyperspectral images(HSIs)have complementary characteristics.The MSI has a large swath and short revisit period,but the number of bands is limited with low spectral resolution,leading to weak separability of between class spectra.Compared with MSI,HSI has hundreds of bands and each of them is narrow in bandwidth,which enable it to have the ability of fine classification,but too long in aspects of revisit period.To make efficient use of their combined advantages,multispectral-hyperspectral remote sensing image collaborative classification has become one of hot topics in remote sensing.To deal with the collaborative classification,most of current methods are unsupervised and only consider the HSI reconstruction as the objective.In this paper,a class-guided coupled dictionary learning method is proposed,which is obviously distinguished from the current methods.Specifically,the proposed method utilizes the labels of training samples to construct discriminative sparse representation coefficient error and classification error as regularization terms,so as to enforce the learned coupled dictionaries to be both representational and discriminative.The learned coupled dictionaries facilitate pixels from the same category have similar sparse represent coefficients,while pixels from different categories have different sparse represent coefficients.The experiments on three pairs of HSI and MSI have shown better classification performance. 展开更多
关键词 multimodal remote sensing multispectral image hyperspectral image collaborative classification class-guided coupled dictionary learning
原文传递
Improved Collaborative Filtering Recommendation Based on Classification and User Trust 被引量:3
2
作者 Xiao-Lin Xu Guang-Lin Xu 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第1期25-31,共7页
When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes ... When dealing with the ratings from users,traditional collaborative filtering algorithms do not consider the credibility of rating data,which affects the accuracy of similarity.To address this issue,the paper proposes an improved algorithm based on classification and user trust.It firstly classifies all the ratings by the categories of items.And then,for each category,it evaluates the trustworthy degree of each user on the category and imposes the degree on the ratings of the user.Finally,the algorithm explores the similarities between users,finds the nearest neighbors,and makes recommendations within each category.Simulations show that the improved algorithm outperforms the traditional collaborative filtering algorithms and enhances the accuracy of recommendation. 展开更多
关键词 collaborative filtering credibility of ratings evaluation on user trust item classification similarity metric
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
3
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部