期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Compression analysis of the gray and white matter of the spinal cord 被引量:1
1
作者 Norihiro Nishida Fei Jiang +7 位作者 Junji Ohgi Akihiro Tanaka Yasuaki Imajo Hidenori Suzuki Masahiro Funaba Takashi Sakai Itsuo Sakuramoto Xian Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第7期1344-1349,共6页
The spinal cord is composed of gray matter and white matter.It is well known that the properties of these two tissues differ considerably.Spinal diseases often present with symptoms that are caused by spinal cord comp... The spinal cord is composed of gray matter and white matter.It is well known that the properties of these two tissues differ considerably.Spinal diseases often present with symptoms that are caused by spinal cord compression.Understanding the mechanical properties of gray and white matter would allow us to gain a deep understanding of the injuries caused to the spinal cord and provide information on the pathological changes to these distinct tissues in several disorders.Previous studies have reported on the physical properties of gray and white matter,however,these were focused on longitudinal tension tests.Little is known about the differences between gray and white matter in terms of their response to compression.We therefore performed mechanical compression test of the gray and white matter of spinal cords harvested from cows and analyzed the differences between them in response to compression.We conducted compression testing of gray matter and white matter to detect possible differences in the collapse rate.We found that increased compression(especially more than 50%compression)resulted in more severe injuries to both the gray and white matter.The present results on the mechanical differences between gray and white matter in response to compression will be useful when interpreting findings from medical imaging in patients with spinal conditions. 展开更多
关键词 biomechanical study cervical spondylotic myelopathy collapse rate compression gray matter mechanical properties spinal cord injury white matter
下载PDF
Natural and Socioeconomic Factors and Their Interactive Effects on House Collapse Caused by Typhoon Mangkhut 被引量:1
2
作者 Xiangxue Zhang Juan Nie +4 位作者 Changxiu Cheng Chengdong Xu Ling Zhou Shi Shen Yuan Pei 《International Journal of Disaster Risk Science》 SCIE CSCD 2021年第1期121-130,共10页
Typhoons are an environmental threat that mainly affects coastal regions worldwide.The interactive effects of natural and socioeconomic factors on the losses caused by typhoon disasters need further examination.In thi... Typhoons are an environmental threat that mainly affects coastal regions worldwide.The interactive effects of natural and socioeconomic factors on the losses caused by typhoon disasters need further examination.In this study,GeoDetector was used to quantify the determinant powers of natural and socioeconomic factors and their interactive effects on the rate of house collapse in Guangdong and Guangxi Provinces of southeast China caused by Typhoon Mangkhut in 2018.We further identify the dominant factors that influenced the disaster losses.The local indicators of spatial association method was then introduced to explain the spatial heterogeneity of the disaster losses under the influence of the dominant factor.The results indicate that both natural and socioeconomic factors significantly affected the house collapse rate.The maximum precipitation was the dominant factor,with a q value of 0.21,followed by slope and elevation,with q values of 0.17 and 0.13,respectively.Population density and per capita gross domestic product had q values of 0.15 and0.13,respectively.Among all of the interactive effects of the influencing factors,the interactive effect of elevation and the ratio of brick-wood houses had the greatest influence(q=0.63)on the house collapse rate.These results can contribute to the formulation of more specific safety and property protection policies. 展开更多
关键词 China Coastal regions GeoDetector House collapse rate Interactive effects Typhoon Mangkhut
原文传递
Energy Absorption and Deformation Mechanism of Lotus-type Porous Coppers in Perpendicular Direction 被引量:2
3
作者 Weidong Li Kai Xu +3 位作者 Honghao Li Haoling Jia Xinhua Liu Jianxin xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1353-1361,共9页
As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility ... As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility as energy absorbers is still in question, particularly when compression is in the direction perpendicular to the axial orientation of cylindrical pores. In this work, the energy absorption of lotus-type porous coppers in the perpendicular direction is investigated at strain rates from 0.001 s^(-1) to^2400 s^(-1). The energy absorption capacity and the energy absorption efficiency are calculated to be4–16 k J/kg and 0.32–0.7, respectively, slightly inferior to metal foams and the same porous solid compressed in the parallel direction due to the shortened extent of the plateau stress region. The deformation mechanism is examined experimentally in conjunction with finite element modeling. Both suggest that gradual squeeze and collapse of pores are the mechanisms accommodating the energy absorption. The deformation is generally evenly distributed over pore ligaments and independent of strain rate. 展开更多
关键词 Lotus-type porous structure Energy absorption Plateau stress region Plastic collapse Strain rate effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部