期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Numerical study on settlement of high-fill airports in collapsible loess geomaterials:A case study of Lüliang Airport in Shanxi Province,China 被引量:9
1
作者 JIE Yu-xin WEI Ying-jie +1 位作者 WANG Du-li WEI Yi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期939-953,共15页
Foundation settlement is of great significance for high-fill engineering in collapsible loess areas.To predict the construction settlement of Lüliang Airport located in Shanxi Province,China,a plane strain finite... Foundation settlement is of great significance for high-fill engineering in collapsible loess areas.To predict the construction settlement of Lüliang Airport located in Shanxi Province,China,a plane strain finite element method considering the linear variation in the modulus,was carried out in this paper based on the results of geotechnical tests.The stress and deformation of four typical sections caused by layered fill are simulated,and then the settlement of the high-fill airport is calculated and analyzed by inputting three sets of parameters.The relative soft parameters of loess geomaterials produce more settlement than the relatively hard parameters.The thicker the filling body is,the greater the settlement is.The filling body constrained by mountains on both sides produces less settlement than the filling body constrained by a mountain on only one side even the filling thickness is almost the same.The settlement caused by the original subbase accounts for 56%−77%of the total settlement,while the fill soils themselves accounts for 23%−44%of the total settlement,which is approximately consistent with the field monitoring results.It provides a good reference for predicting the settlement of similar high-fill engineering. 展开更多
关键词 high-fill airport collapsible loess settlement deformation numerical calculation
下载PDF
Static load test and load transfer mechanism study of squeezed branch and plate pile in collapsible loess foundation 被引量:8
2
作者 GAO Xiao-juan WANG Jin-chang ZHU Xiang-rong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1110-1117,共8页
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati... As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice. 展开更多
关键词 collapsible loess foundation Squeezed branch and plate pile Immersion processing Full-scale static load test
下载PDF
Experimental study on improving collapsible loess with cement 被引量:2
3
作者 SHAN Bo WANG Changming +3 位作者 DONG Quanyang TANG Ling ZHANG Guangyi WEI Jiaming 《Global Geology》 2010年第2期79-84,共6页
The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation ... The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation design in collapsible loess zone. Selecting collapsible loess from Fuxin-Chaoyang highway in Liaoning, the authors conducted a series of tests for improving loess with cement. The loess in different water content was mixed with the cement in varying proportions, unconfined compression strength for the samples at four different curing periods were tested, and the relationships of improved soil strength among cement mixture ratio and curing periods were analyzed. When the curing periods are certain, the strength of loess increases along with the mixture ratio increases; when the cement mixture ratio is 5%-15%, the scope of increases is quite obvious; when the mixture ratio is greater than 15%, the tendency of intensity increases turns slow. When the mixture ratio for the specimen is certain, the intensity of the test specimen increases along with the curing period increases, the intensity grows obviously in 28 days, and the growth rate is small in 28-90 days, the intensity tends to be steady in the curing period of 90 days. 展开更多
关键词 collapsible loess CEMENT unconfined compression strength
下载PDF
Experiment Study of Dynamic Compaction Applied in Collapsible Loess
4
作者 Mei Wang Hongbai Xiao 《Journal of Civil Engineering and Architecture》 2010年第1期67-70,共4页
The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and an... The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m. 展开更多
关键词 collapsible loess construction safety dynamic compaction.
下载PDF
Constructing Large Capacity Power Plant on Collapsible Loess Stratum with Huge Thickness
5
作者 Huang Tianshi, Liu Houjian Northwest Electric Power Design Institute (NWEPDI) 《Electricity》 1996年第4期39-41,共3页
1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to severa... 1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to several hundred meters along the river’s terraces to those geomorphologic plateaus. In geology, "China Loess" has become a geologic term, because the loess in China has evolved with the widest distribution and greatest thickness in the world, and is also a typical and significant deposit in Quaternary Period. 展开更多
关键词 THAN MORE In TEST Constructing Large Capacity Power Plant on collapsible loess Stratum with Huge Thickness
下载PDF
Influence of Collapsible Loess on Foundation and its Treatment Strategy
6
作者 Miao Dai 《Journal of World Architecture》 2021年第4期34-37,共4页
The properties of collapsible loess are complex.The self-gravity of overlying soil,sei gravity stress and additional stress act together,which will damage the soil structure and lead to the deformation of the soil str... The properties of collapsible loess are complex.The self-gravity of overlying soil,sei gravity stress and additional stress act together,which will damage the soil structure and lead to the deformation of the soil structure.Collapsible loess is widely distributed in Northwest and Northeast China.A series of problems caused by its structural characteristics will affect the quality of foundation construction.Therefore,construction enterprises need to deeply study the foundation treatment measures of collapsible loess,so as to avoid the uneven settlement after the construction of collapsible yellow soil foundation.This paper analyzes from the judgment and classification of collapsible loess,studies the impact of collapsible loess on building fbxmdation construction,and explores the specific construction treatment measures of collapsible loess,in order to promote the effective application of foundation construction. 展开更多
关键词 collapsible loess Foundation construction Processing strategy Constructional engineering
下载PDF
Evaluation and Analysis of the Effect of Lignin Amelioration on Loess Collapsibility 被引量:3
7
作者 Xiumei Zhong Yuxin Liang +4 位作者 Qian Wang Jinlian Ma Shouyun Liang Yan Wang Xiaowei Xu 《Journal of Renewable Materials》 SCIE EI 2022年第12期3405-3424,共20页
The road subgrade and road surface in collapsible loess area are prone to many engineering diseases such as uneven subgrade settlement,insufficient bearing capacity of soaked foundation,collapse and instability of sub... The road subgrade and road surface in collapsible loess area are prone to many engineering diseases such as uneven subgrade settlement,insufficient bearing capacity of soaked foundation,collapse and instability of sub-grade side slope due to the special properties of loess.As an environment-friendly,low-cost soil modifier with good adhesion and chelation properties,lignin has been considered to be used in highway subgrade construction.In order to explore the effect of lignin on loess,the compressive and collapsible properties of modified loess with different lignin contents were analyzed based on consolidation compression test.The improvement mechanism of lignin on loess collapsibility was studied by means of infiltration test and SEM test.The results show that lignin fibers can promote the agglomeration of loose particles and form a network structure in the soil particle pores,enhance the cementation strength between particles and soil skeleton,and reduce the permeability of loess.With the increase of lignin fiber content,the improvement degree of loess collaps ility shows a trend of first increasing and then decreasing.When the lignin fiber content is 2%,the effect is the best,and the improved loess ollapsi-bility is eliminated. 展开更多
关键词 collapsible loess LIGNIN distribution characteristics of pore particles SEM permeability characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部