期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis on Collapse Strength of Casing Wear 被引量:3
1
作者 LIANG Erguo LI Zifeng +2 位作者 HAN Yong LI Guoqin GUO Peipei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期613-619,共7页
Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing... Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing wear collapse strength have been done, but few of them focus on collapsing failure mechanism, and influencing factors and law of collapse strength. So, significant difference between estimated value and actual value of collapse strength comes into being. By theoretical analysis, numerical simulation and actual test, the collapsing failure mechanism of casing wear as well as the influencing factors and laws of collapse strength are investigated, and the investigation results show that collapse of crescent casing wear belongs to 'three hinged' instability. The severely-worn position on the casing is yielded into the plastic zone first then deformed greatly, which causes the plastic instability of the whole structure. The casing wear collapse strength presents changes of exponent, power function and linear trend with the residual casing wall thickness, wear radius and axial load, respectively. When the flexibility is less than 10°/30 m, the borehole bending has less impact on casing collapse strength. Thus, the computation model for the casing wear collapsing strength is established by introducing wear radius coefficient and casing equivalent yield strength, at the same time, the model is tested. The test results show that the relative error for the computation model is less than 5%. The research results provide a basis for design of the casing string strength and evaluation of down-hole safety. 展开更多
关键词 casing wear collapsing failure collapse strength borehole bending computation model
下载PDF
Development of high-strength collapse-resistance casing series
2
作者 XIE Huihua~(1)),CAO Zefu~(1)),TIAN Qingchao~(2)),DONG Xiaoming~(2)) and DING Weijun~(2)) 1) Oil & gas Technical Management Department,Sinopec Zhongyuan Oilfield company,Puyang 457000,China 2) Tube & Pipe Technology Center,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期67-,共1页
Zhongyuan oilfields are mainly located in Dongpu depression,where the geological conditions were extremely complicated and the external stress is abnormally high,the pipe used may fail in the radial direction owing to... Zhongyuan oilfields are mainly located in Dongpu depression,where the geological conditions were extremely complicated and the external stress is abnormally high,the pipe used may fail in the radial direction owing to well shrinkage caused by the creep of salt rock,leading catastrophic economic loss. Therefore this region has been wellkown as a touchstone for high collapse resistance casing since long before.In order to satisfy the requirement for high-collapse strength casing owing to the creep of salt bed stratum in Dongpu Depression region,BG140TT,BG150TT and BG160TT high-strength collapse resistance casing series were developed to better cope with the severe geological conditions.Among the casing series, a BG160TT non-API specification casing with collapse strength not less than 170 MPa were prepared.Up to present,all these high-strength collapse resistance casing have been successfully applied in the Dongpu Depression region.The research concept,mechanical properties,as well as application result were introduced in this paper. 展开更多
关键词 high-strength collapse-resistance casing mechanical properties collapse strength
下载PDF
Analysis of mechanical strengths of extreme line casing joint considering geometric, material, and contact nonlinearities
3
作者 Ji-Yun Zhang Chi Peng +4 位作者 Jian-Hong Fu Quan Cao Yu Su Jian-Yun Pang Zi-Qiang Yu 《Petroleum Science》 SCIE EI CAS 2024年第3期1992-2004,共13页
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve... To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint. 展开更多
关键词 Extreme line casing Elastic-plastic mechanics Finite element analysis Tensile strength Collapse strength
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部