We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and ampl...We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and amplitudes.The scheme also provides a new possibility of preparing vibrational Fock states and laser cooling.展开更多
After people or vehicles press, piezoelectric ceramics can send a weak and unstable alternating current. According to this characteristic, we made feet pressing energy collection and utilization device based on piezoe...After people or vehicles press, piezoelectric ceramics can send a weak and unstable alternating current. According to this characteristic, we made feet pressing energy collection and utilization device based on piezoelectric ceramics. The two parts of this device includes energy storage and utilization. In terms of storage, the energy collection module, can deposit AC sent by piezoelectric ceramics in the super capacitor after rectification. In terms of utilization of energy, the device achieve a variety of usage: through the USB interface, it can supply power for different equipments, replace the mobile station of train stations and realize the function of saving the electricity as the night corridor induction lamp, combined with vibration module design and programmable timer. The whole structure is supported by an acrylic plate, which saves cost and have good durability. This device implements the storage and usage of idle feet pressing energy. In conclusion, it is helpful to provide a new idea for people' s low carbon lives and has a quite broad application prospect.展开更多
A new trough imaging solar collector with multiple compounding curved surfaces has been designed. Its working principle and design parameters have been introduced. The experimental curve of temperature rising of the s...A new trough imaging solar collector with multiple compounding curved surfaces has been designed. Its working principle and design parameters have been introduced. The experimental curve of temperature rising of the system with time under the real weather has been given. The system efficiency and the relation between efficiency and temperature have been calculated. The test result shows that the system has the advantages of high collecting temperature and not obvious variety of the collecting efficiency with the operating temperature. Therefore, this collector is a quite ideal medium temperature solar collector.展开更多
Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential f...Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential flows and difference of neutron proton collective flows are sensitive to the momentum-dependent symmetry potential. This sensitivity is less affected by both the isoscalar part of nuclear equation of state and in-medium nucleon- nucleon cross sections. Moreover, this sensitivity becomes pronounced with increasing the rapidity cut.展开更多
The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar ...The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.展开更多
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric fil...Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.展开更多
Water-solid triboelectric nanogenerators(TENGs),as new energy collection devices,have attracted increasing attention in ocean energy harvesting and selfpowered sensing.Polyacrylic acid(PAA)coating,usually used on the ...Water-solid triboelectric nanogenerators(TENGs),as new energy collection devices,have attracted increasing attention in ocean energy harvesting and selfpowered sensing.Polyacrylic acid(PAA)coating,usually used on the surface of marine equipment,has the property of anti-aging and anti-wear but limits triboelectrical output when used with TENGs.In this paper,polyacrylic acid coating was modified with fluorinated polyacrylate resin(F-PAA)to increase its triboelectrical output,by 6 times,and also to increase its anti-corrosion property.In addition,the corrosion resistance property can be further enhanced by cathodic protection using the electrical output generated by the water-flow triboelectrical energy transfer process.Given their easy fabrication,water-flow energy harvesting,and corrosion resistance,PAA/F-PAA coating-based TENGs have promising applications in river and ocean energy collection and corrosion protection.展开更多
An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation(MAO)and fluorinated sol-gel(FSG)coating.The MAO/FSG hybrid coating-based TENG(MF-TENG)h...An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation(MAO)and fluorinated sol-gel(FSG)coating.The MAO/FSG hybrid coating-based TENG(MF-TENG)has a current output of31μA and voltage output of 870 V,which is eight times that of the MAO based TENG.Compared with organic coating,the organic/inorganic hybrid coating has good wear resistance.When the fluorine composition on the surface of the coating is damaged,the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface.The fluorinated sol-gel coating is hydrophobic,which ensures that the coating has good corrosion resistance.Also,the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection.Based on the anti-corrosion,anti-wear and self-healing properties,the MF-TENG has potential applicability in the field of energy collection,energy supply,and corrosion protection.展开更多
文摘We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and amplitudes.The scheme also provides a new possibility of preparing vibrational Fock states and laser cooling.
文摘After people or vehicles press, piezoelectric ceramics can send a weak and unstable alternating current. According to this characteristic, we made feet pressing energy collection and utilization device based on piezoelectric ceramics. The two parts of this device includes energy storage and utilization. In terms of storage, the energy collection module, can deposit AC sent by piezoelectric ceramics in the super capacitor after rectification. In terms of utilization of energy, the device achieve a variety of usage: through the USB interface, it can supply power for different equipments, replace the mobile station of train stations and realize the function of saving the electricity as the night corridor induction lamp, combined with vibration module design and programmable timer. The whole structure is supported by an acrylic plate, which saves cost and have good durability. This device implements the storage and usage of idle feet pressing energy. In conclusion, it is helpful to provide a new idea for people' s low carbon lives and has a quite broad application prospect.
基金Acknowledgments This work is supported by the National Natural Science Foundation of China (No.50576004) and National "863" Hi-Tech Development Program of China (No.2007AA05Z433).
文摘A new trough imaging solar collector with multiple compounding curved surfaces has been designed. Its working principle and design parameters have been introduced. The experimental curve of temperature rising of the system with time under the real weather has been given. The system efficiency and the relation between efficiency and temperature have been calculated. The test result shows that the system has the advantages of high collecting temperature and not obvious variety of the collecting efficiency with the operating temperature. Therefore, this collector is a quite ideal medium temperature solar collector.
基金Supported by the National Natural Science Foundation of China under Grant No 11505150the Yuncheng University Research Project under Grant No YQ-2014014the China Postdoctoral Science Foundation under Grant No 2015M582730
文摘Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential flows and difference of neutron proton collective flows are sensitive to the momentum-dependent symmetry potential. This sensitivity is less affected by both the isoscalar part of nuclear equation of state and in-medium nucleon- nucleon cross sections. Moreover, this sensitivity becomes pronounced with increasing the rapidity cut.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the National Natural Science Foundation of China (Grant Nos. 92050102 and 11874311)+1 种基金the Shenzhen Science and Technology Program (Grant No. JCYJ20210324121610028)the Fundamental Research Funds for the Central Universities (Grant Nos. 20720220033 and 20720200074)。
文摘The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.
基金This work was supported by the National Natural Science Foundation of China(No.52072041)the Beijing Natural Science Foundation(No.JQ21007)the University of Chinese Academy of Sciences(No.Y8540XX2D2).
文摘Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.
基金the Program for Taishan Scholars of Shandong Province(No.ts20190965)the National Key Research and Development Program of China(2020YFF0304600)+2 种基金the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB24)the National Natural Science Foundation of China(Grant No.51905518)the Innovation Leading Talents Program of Qingdao(19-3-2-23-zhc)in China.
文摘Water-solid triboelectric nanogenerators(TENGs),as new energy collection devices,have attracted increasing attention in ocean energy harvesting and selfpowered sensing.Polyacrylic acid(PAA)coating,usually used on the surface of marine equipment,has the property of anti-aging and anti-wear but limits triboelectrical output when used with TENGs.In this paper,polyacrylic acid coating was modified with fluorinated polyacrylate resin(F-PAA)to increase its triboelectrical output,by 6 times,and also to increase its anti-corrosion property.In addition,the corrosion resistance property can be further enhanced by cathodic protection using the electrical output generated by the water-flow triboelectrical energy transfer process.Given their easy fabrication,water-flow energy harvesting,and corrosion resistance,PAA/F-PAA coating-based TENGs have promising applications in river and ocean energy collection and corrosion protection.
基金supported by the Program for Taishan Scholars of Shandong Province(Grant No.ts20190965)the National Key Research and Development Program of China(Grant No.2020YFF0304600)+2 种基金the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB24)the National Natural Science Foundation of China(Grant No.51905518)the Innovation Leading Talents Program of Qingdao(Grant No.19-3-2-23-zhc)in China。
文摘An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation(MAO)and fluorinated sol-gel(FSG)coating.The MAO/FSG hybrid coating-based TENG(MF-TENG)has a current output of31μA and voltage output of 870 V,which is eight times that of the MAO based TENG.Compared with organic coating,the organic/inorganic hybrid coating has good wear resistance.When the fluorine composition on the surface of the coating is damaged,the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface.The fluorinated sol-gel coating is hydrophobic,which ensures that the coating has good corrosion resistance.Also,the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection.Based on the anti-corrosion,anti-wear and self-healing properties,the MF-TENG has potential applicability in the field of energy collection,energy supply,and corrosion protection.